
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011 1901

Incremental Learning from Stream Data
Haibo He, Senior Member, IEEE, Sheng Chen, Student Member, IEEE,

Kang Li, Member, IEEE, and Xin Xu, Member, IEEE

Abstract— Recent years have witnessed an incredibly increas-
ing interest in the topic of incremental learning. Unlike con-
ventional machine learning situations, data flow targeted by
incremental learning becomes available continuously over time.
Accordingly, it is desirable to be able to abandon the traditional
assumption of the availability of representative training data
during the training period to develop decision boundaries. Under
scenarios of continuous data flow, the challenge is how to
transform the vast amount of stream raw data into information
and knowledge representation, and accumulate experience over
time to support future decision-making process. In this paper,
we propose a general adaptive incremental learning framework
named ADAIN that is capable of learning from continuous
raw data, accumulating experience over time, and using such
knowledge to improve future learning and prediction perfor-
mance. Detailed system level architecture and design strategies
are presented in this paper. Simulation results over several real-
world data sets are used to validate the effectiveness of this
method.

Index Terms— Adaptive classification, concept shifting, data
mining, incremental learning, machine learning, mapping func-
tion.

I. INTRODUCTION

INCREMENTAL learning has recently attracted growing
attention from both academia and industry. From the com-

putational intelligence point of view, there are at least two
main reasons why incremental learning is important. First,
from data mining perspective, many of today’s data-intensive
computing applications require the learning algorithm to be
capable of incremental learning from large-scale dynamic
stream data, and to build up the knowledge base over time to
benefit future learning and decision-making process. Second,
from the machine intelligence perspective, biological intel-
ligent systems are able to learn information incrementally

Manuscript received November 18, 2010; revised July 22, 2011; accepted
September 28, 2011. Date of publication October 31, 2011; date of current
version December 1, 2011. This work was supported in part by the National
Science Foundation under Grant ECCS 1053717 and the Defense Advanced
Research Projects Agency Mathematics of Sensing, Exploitation, and
Execution under Grant FA8650-11-1-7148.

H. He is with the Department of Electrical, Computer, and Biomedical
Engineering, University of Rhode Island, Kingston, RI 02881 USA (e-mail:
he@ele.uri.edu).

S. Chen is with the Department of Electrical and Computer Engineer-
ing, Stevens Institute of Technology, Hoboken, NJ 07030 USA (e-mail:
schen5@stevens.edu).

K. Li is with the School of Electronics, Electrical Engineering and Com-
puter Science, Queen’s University Belfast, Belfast BT7 1NN, U.K. (e-mail:
k.li@qub.ac.uk).

X. Xu is with the Institute of Automation, College of Mechatronics and
Automation, National University of Defense Technology, Changsha 410073,
China (e-mail: xinxu@nudt.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2011.2171713

throughout their lifetimes, accumulate experience, develop
spatial-temporal associations, and coordinate sensory-motor
pathways to accomplish goals (goal-oriented behavior). In
this paper, we mainly focus on the first issue and propose
a general incremental learning framework that is able to learn
from stream data for classification purpose. Certainly, we
would like to note that such a framework could also benefit
the research community to advance the understanding of the
second issue, and hopefully provide useful suggestions to bring
the community much closer to a biologically alike incremental
learning capability in the long term.

Among the recent efforts on incremental learning from
knowledge discovery and data analysis points of view, numer-
ous new algorithms and architectures have been developed
and successfully applied to different domains. For instance, an
incremental linear discriminant analysis (ILDA) was proposed
in [1] to handle the inverse of the within-class scatter matrix
issue. Based on ILDA, a new algorithm, namely GSVD-
ILDA, the generalized singular value decomposition LDA,
was proposed and successfully applied to the face recognition
problem. In [2] and [3], incremental learning for autonomous
navigation systems was presented. Various experiments with
mobile robots and a vision-based autonomous land vehicle
(ALV) in the indoor learning environment were used to
demonstrate the effectiveness of such learning methods. In
[4], a system named SwiftFile was proposed to help different
users to organize their e-mail messages into folders, which can
be dynamically adjusted according to users’ mailing habits.
Some other works on incremental learning and its applications
include the incremental learning fuzzy neural (ILFN) network
for fault detection and classification [5], incremental learning
for multi-sensor data fusion [6], incremental genetic learning
for data classification [7], incremental semi-supervised learn-
ing [8], incremental learning for human-robot interaction [9],
and others.

There is a controversy regarding the definition of incre-
mental learning in the community. For instance, in [10] and
[11], whether the previous data can be accessed by the current
learning process in the scenario of incremental learning was
debated. Besides, in [12], whether the incremental learning
should be motivated to handle the unexpected emergent new
class was discussed. Recently, it was presented in [13] and
[14] that incremental learning should be capable of learning
the new information and retaining the previously acquired
knowledge, without having access to the previously seen
data. Along this direction, the incremental learning framework
discussed in this paper mainly focuses on two important issues:
how to adaptively pass the previously learned knowledge to
the presently received data to benefit learning from the new

1045–9227/$26.00 © 2011 IEEE

1902 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

raw data, and how to accumulate experience and knowl-
edge over time to support future decision-making processes.
We consider these two characteristics as the most critical
aspects to understand the foundation of the adaptive incremen-
tal learning from computational intelligence point of view.

Motivated by the successful application of IMORL for
video and image processing [13], in this paper we propose
a general framework ADAIN that is capable of incremental
learning from stream data. Different base classifiers can be
integrated into this framework according to different applica-
tion requirements, which provides the flexibility of using this
approach across a wide range of domains. Mapping function
is the key component of ADAIN that can effectively transform
the knowledge from the current data chunk into the learning
process of the future data chunks. Its design can be accom-
plished through different means such as nonlinear function
approximators instead of the Euclidean distance function as
used in many of the existing approaches. We also investigate
the issue of incremental learning from new concepts and long
sequence of data stream to provide an in-depth understanding
of how the proposed approach can effectively handle such
situations. Comparative study of the proposed framework with
existing techniques assisted with detailed assessment metrics
and significance tests are also presented in this paper.

The rest of this paper is organized as follows. In Section II,
we formulate the incremental learning problem targeted by this
paper. In Section III, we present the proposed ADAIN frame-
work in detail. System-level architecture and detailed mapping
function design are presented in this section. In Section IV, we
present a convergence analysis of ADAIN. Section V describes
the simulation configurations and presents the corresponding
simulation results. In Section VI, we provide a detailed analy-
sis of learning from long sequences of stream data using the
proposed framework. Finally, Section VII concludes this paper
and discusses several future research directions.

II. PROBLEM FORMULATION

Considering the following learning scenario, let D j−1 rep-
resent the data chunk received between time t j−1 and t j , and
h j−1 be a hypothesis developed on D j−1. In this paper, we
mainly focus on the classification task, therefore the hypothesis
here specifically refers to a type of base classifier, such as a
neural network, a decision tree, or any other kind of model
adopted for classification. To achieve the incremental learning
capability over stream data, conventionally there are two major
categories of approaches.

The first group of methods employs a simple data accu-
mulation strategy. In these methods, whenever a chunk of
data is received, one simply develops a new hypothesis
h j based on all the available data sets accumulated so far
{. . . ,D j−1;D j } and discards the previously trained hypothesis
h j−1. This is a very straightforward approach without using
the existing learned knowledge in ht−1 to help learning from
new data in ht . We would like to point out that for some
memory-based approaches such as the locally weighted linear
regression method, certain level of previous experience can be
accumulated to avoid the “catastrophic forgetting” problem.

Nevertheless, this group of methods generally require the
storage of all accumulated data sets. Therefore it may not be
feasible in many data-intensive real applications due to limited
memory and computational resources.

The second approach employs ensemble learning method-
ology. The key idea of this category of approaches is to
develop multiple hypotheses along the stream data, and use
a combination strategy to integrate all or part of the existing
hypotheses whenever a decision is needed. Briefly speaking,
whenever a new chunk of data is available, either a single
new hypothesis, h j , or a set of new hypotheses H: h j , j =
1, . . . , L, are developed based on the new data. Finally, a com-
bination mechanism can be used to integrate all the decisions
from different hypotheses to reach the final prediction. The
major advantage of this approach is that storage or access
to the previously observed data is not required. Instead, the
knowledge has been stored in a series of hypotheses developed
along the learning life. Although this category of approaches
have been successfully applied to many domains, it also has
it’s own limitations. For instance, the knowledge learned in
time period of [t j−1, t j], i.e., the hypothesis h j−1, cannot
be directly used to benefit the learning process in [t j , t j+1]
though both hypotheses will participate in the final decision
integration process. This means knowledge integration process
exclusively happens in the final voting stage instead of the
learning period. Therefore, an essential problem of incremental
learning, i.e., the adaptive accumulation of experience over
time and its usage in facilitating future learning process, is
poorly addressed by this category of approaches.

We would also like to note that besides these two major
groups of approaches, online learning methods have also been
well studied to address the incremental learning problem.
For instance, an online version Boosting and Bagging was
proposed in [15] to adapt the original AdaBoost and Bag-
ging algorithms for learning from stream data, which was
customized in [16] to handle feature selection problems in
image processing. In [17], the authors analyzed a family of
online learning methods based on “Passive-Aggressive (PA)”
algorithms. The general idea of “PA” is that upon arrival of a
new data point, the new support vector machine (SVM) classi-
fiers should be constructed in a way that it remains as close as
possible to the old one, while in the meantime it should at least
achieve a unit margin against the most recent example. Due
to noise in dataset, the two conditions are hardly achievable
simultaneously. Therefore, the authors proposed and analyzed
variants of PA methods in efforts to strike a balance between
the conditions [17]. In [18], a stochastic gradient-based online
learning method was proposed to address the non-convex
Neyman-Pearson (NP) classification problem, which is par-
ticularly well-suited for processing large-scale data sets. In
[19], several online SVM algorithms, including LASVM-G,
LASVM-NC, and LASVM-I, were proposed. These algo-
rithms, while generating accurate intermediate models in its
iterative steps by leveraging the duality gap, are more attractive
in that computational efficiency is progressively increasing
for both time and space. Another efficient SVM optimizer,
PEGASOS, for online learning was proposed in [20], which
decreases the number of iterations needed for SVM training

HE et al.: INCREMENTAL LEARNING FROM STREAM DATA 1903

Hypothesis
(H layer)

Distribution
function
(P layer)

Raw data

t−1

D
t−1

p
t−1

To

{h

t
, h

t+1
,...} To

{h

t+1
, h

t+2
,...}

h
t−1

t t + 1
Time

D
t+1

p
t+1

h
t+1

D
t

p
t

h
t

Fig. 1. ADAIN: adaptive incremental learning for classification.

significantly, and has been successfully applied to process
large text corpus. The success of online learning methods
can also be recognized by many high-quality implementations,
including the fast out-of-core learning system by the Vowpal
Wabbit project [21], which basically implements a generalized
linear model using stochastic gradient descent.

Due to the importance of learning from data streams for
different domains, there are also some other efforts to address
this problem from different angles. For instance, an online
dynamic value system for machine learning was proposed
in [22]. A data-driven learning model was developed in
[23]–[25], and its applications to different classification prob-
lems were reported. Growing neural gas algorithm [26], [27]
was also developed to adapt the original neural gas model
[28] to work in an incremental learning scenario. Based on
growing cell structure and competitive Hebbian learning, it
can dynamically add and delete nodes and edges to learn the
topological relations in a given set of input vectors. A neural
network architecture called fuzzy ARTMAP was developed
for incremental supervised learning [29], in which a minimal
number of new recognition categories are learned. Based on
the success of the ARTMAP architecture, various modified
algorithms were created for different situations, such as the
Gaussian ARTMAP for incremental learning of noisy data
[30], the hybrid architecture of fuzzy ARTMAP and prob-
abilistic neural network for on-line learning and probability
estimation [31], the life-long learning cell structures [32],
the ellipsoid ART and ARTMAP for incremental clustering
and classification [33], among others. Other related works
include nearest generalized exemplar [34], generalized fuzzy
min-max neural networks [35], and incremental learning based
on function decomposition [36]. Interested readers can refer
to [37] for further details. Data-driven adaptive learning and
optimization based on adaptive dynamic programming has also
been investigated in [38]–[44], which not only provide critical
fundamental insight about machine intelligence research, but
also provide many useful techniques and solutions for a wide
range of applications domains. Finally, it is important to note
that the imbalanced learning (i.e., learning from imbalanced
data) over data streams has also attracted significant growing
attention in the community [45]–[47]. A comprehensive and

critical review of the foundations and principles of imbalanced
learning, the state-of-the-art research, the current assessment
metrics, as well as the major research opportunities and
challenges can be found in [45].

III. ADAPTIVE INCREMENTAL LEARNING

FROM STREAM DATA

Motivated by the adaptive boosting principle and ensemble
learning methodology [48], [49], we propose an adaptive incre-
mental learning framework to enable knowledge accumulation
and transformation to benefit learning from continuous data
stream. Unlike traditional learning approaches, the objectives
here are two-fold: integration of previously learned knowledge
into currently received data to improve learning from new raw
data, and accumulation of experience over time to support
future decision-making processes.

A. Proposed Adaptive Incremental Learning Framework

Assume a learner is presented with a data flow over time. At
time t , a new set of training data Dt is received. The previous
knowledge in this case includes the hypothesis ht−1, which
was developed at time t−1 from the distribution function P t−1
applied to the data set Dt−1. Here the distribution function can
be either a sampling probability function or weight distribution
function for different instances in the data. Difficult examples
that are hard to learn will carry higher weights compared
to those examples that are easy to learn [48]. For the first
chunk of the received data, the initial distribution function P1
can be set to a uniform distribution because nothing has been
learned yet. In context of this, the system-level framework of
ADAIN is illustrated in Fig. 1. To demonstrate how a particular
data set Dt received at t is learned to be integrated into the
final knowledge integration process, ADAIN is algorithmically
described as shown in the next page.

With the continuous stream data, a series of weight distri-
bution functions will be developed to represent the learning
capability of data in each chunk (the P layer in Fig. 1). Based
on such a distribution function Pt , a hypothesis ht will be
developed, in which the decision boundary is automatically
forced to be more focused on the difficult-to-learn regions.

1904 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

Algorithm 1 The ADAIN framework
Previous knowledge at time (t − 1):
− Data set, Dt−1, with m instances: {xi , yi }, (i = 1, . . . , m),
where xi is an instance in the n dimensional feature space
X and yi ∈ Y = {1, 2, . . . , c} is the class identity label
associated with xi .
− Distribution function: P t−1.
− A hypothesis, ht−1, developed by the data based on Dt−1
with P t−1, where P t−1 = [wt−1

1 , wt−1
2 , . . . , wt−1

m].

Current Input at time t:
− A new data set, Dt , with m′ instances, where m′ may or
may not be the same size as m, and can be represented as
{x j , y j }, (j = 1, . . . , m′).

Learning procedure:
(1) Estimate the initial distribution function for Dt .

P̂ t−1 = ϕ(Dt−1,Dt , Pt−1) (1)

where ϕ is a mapping function.
(2) Apply hypothesis ht−1 to Dt , calculate the pseudo-error
of ht−1

εt−1 =
∑

j :ht−1(x j) �=y j

P̂ t−1(j) (2)

(3) Set βt−1 = εt−1/(1 − εt−1).
(4) Update the distribution function for Dt :

P t (j) = P̂ t−1(j)

Zt
×

{
βt−1 if ht−1(x j) = y j

1 otherwise
(3)

where Zt is a normalization constant so that P t is
a distribution, and P t can be represented as P t =
[wt

1, w
t
2, . . . , w

t
m′].

(5) A hypothesis ht is developed by the data example based
on Dt with P t .
(6) Repeat the procedure when the next chunk of new data
sets Dt+1 is received.

Output: The final hypothesis:

h f inal (x) = arg max
y∈Y

∑

t :hT (x)=y

log

(
1

βt

)
(4)

where T is the set of incrementally developed hypotheses in
the learning life.

After Pt and ht have been obtained, the system uses its
knowledge to facilitate learning from the next chunk of raw
data, Dt+1. This is achieved by the top-down and horizontal
signal flow, as illustrated in Fig. 1. The objective here is
to inherit the adaptive boosting characteristic to improve
incremental learning.

There are two mechanisms in the proposed ADAIN frame-
work to facilitate adaptive incremental learning. First, a map-
ping function ϕ (1) is used to estimate the initial distribution
function P̂t−1 for Dt . This function could be customized
in accordance with the requirements of specific applications.

D
t−1

p
t−1

p
t−1

{x
j
, y

j
}, j � 1 ,...,m

{x
i
, y

i
}, i � 1 ,...,m

tim
e

Neural network

Train the network

Predict the initial distri
bution

D
t

ˆ

Fig. 2. Mapping function based on MLP.

The objective of the ϕ function is to provide a quantitative
estimation of the learning capability of the new chunk of data
based on previously trained classifier. We will discuss this in
detail in Section III-B. Second, the initial estimation P̂t−1 is
applied to the new chunk of data Dt to calculate the pseudo-
error (2), which represents the goodness-of-learning when the
previous knowledge ht−1 is applied to the new data. Similar to
AdaBoost [48], [49], βt is calculated as a function of εt . This
in turn is used to refine the distribution function in (3). In this
way, misclassified instances (difficult examples) will receive
higher weights, and the learning algorithm will adaptively
push the decision boundary to focus on those hard-to-learn
instances. Furthermore, since the hypothesis developed at the
previous time step is used to evaluate its performance over
the current data chunk, this framework implicitly takes into
consideration all previous domain data sets for the current
hypothesis for knowledge accumulation and transformation
without requiring access to previous data.

B. Design of the Mapping Function

In the proposed learning framework, the mapping function
ϕ (1) provides a connection from past experience to the newly
received data, and adapts such knowledge to data sets received
in future. Therefore, the design of the mapping function ϕ is
of critical importance to this framework. When the classic
boosting idea is applied to traditional static learning problem
[48], [49], the weights can be updated iteratively based on the
static training data in a sequential manner. However, in incre-
mental learning scenario, one cannot directly obtain/update
such weights when a new chunk of the data flow is received.
In this section, we propose to use nonlinear regression models
as the mapping function to achieve the goal.

Let us take the general function approximator of neural
network with multilayer perceptron as an example here (we
abbreviate this as “MLP” in the rest of this paper). Fig. 2
shows a high-level structure on this. Based on the previous
data information, Dt−1, and its associated distribution func-
tion, P t−1, one can develop an MLP model to learn the
relationships between the feature space and its corresponding
numerical weight function, P t−1. Then, when the new chunk

HE et al.: INCREMENTAL LEARNING FROM STREAM DATA 1905

x
i
,

1 W (1)

W (2)
x

i
,

2

x
i
,

3

x
i
,

n−1

J
t−1

x
i
,

n

n-
di

m
en

si
on

al
 in

pu
ts

Fig. 3. Implementation details of MLP for distribution function estimation.

of data, Dt is received, one can use the trained MLP to obtain
the initial estimation of the distribution function.

To show this idea clearly, Fig. 3 illustrates a detailed design
structure with MLP. Here {xi,q }, (i = 1, . . . , m; q = 1, . . . , n)
represents the n-dimensional feature space of an instance xi in
data chunk Dt−1. Jt−1 is the currently estimated distribution
function output. W(1) represent the connection weights of
input to hidden layer neurons, and W(2) represent the con-
nection weights from hidden layer neurons to output neuron.
Backpropagation [50], [51] is the key to tune the parameters
of W(1) and W(2) to learn the relationship between the inputs
and the distribution function. To do so, the error function can
be defined as

e(k) = J(t−1)(k − 1)− P(t−1)(k − 1); E(k) = 1

2
e2(k) (5)

where k represents the backpropagation training epoch,
Jt−1(k − 1) and P t−1(k − 1) represent the estimated value
and target value of the distribution function for data Dt−1,
respectively. For clear presentation, in the following discussion
we drop the subscript (t −1) to derive the update rule of W(1)

and W(2).
To calculate backpropagation, one can define the neural

network output as (see Fig. 3)

J (k) = 1 − e−v(k)

1 + e−v(k)
(6)

v(k) =
Nh∑

f =1

w
(2)
f (k)g f (k) (7)

g f (k) = 1 − e−h f (k)

1 + e−h f (k)
, f = 1, . . . , Nh (8)

h f (k) =
n∑

q=1

w
(1)
f,q (k)xi,q (k), f = 1, . . . , Nh (9)

where h f is the f th hidden node input of the neural network
and g f is the corresponding output of the hidden node, v is
the input to the output node of the network before the sigmoid
function, Nh is the number of hidden neurons of the network,
and n is the total number of inputs to the network.

Therefore, one can apply backpropagation to update the
weights of the neural network to learn the relationship between
the feature space and corresponding distribution function. We
detail this procedure in the following paragraph.

Weight adjustment for the hidden to the output layer �w(2)

�w
(2)
f = α(k)

[
− ∂ E(k)

∂w
(2)
f (k)

]
, (10)

∂ E(k)

∂w
(2)
f (k)

= ∂ E(k)

∂ J (k)

∂ J (k)

∂v(k)

∂v(k)

∂w
(2)
f (k)

= e(k) · 1

2
(1 − (J (k))2) · g f (k). (11)

Weight adjustments for the input to the hidden layer �w(1)

�w
(1)
f,q = α(k)

[
− ∂ E(k)

∂w
(1)
f,q(k)

]
, (12)

∂ E(k)

∂w
(1)
f,q(k)

= ∂ E(k)

∂ J (k)

∂ J (k)

∂v(k)

∂v(k)

∂g f (k)

∂g f (k)

∂h f (k)

∂h f (k)

∂w
(1)
f,q(k)

= e(k) · 1

2
(1 − (J (k))2) · w

(2)
f (k)

·1

2
(1 − g2

f (k)) · xi,q (k) (13)

where α(k) is a learning rate. Once the neural network is
trained, it can be used to predict the estimated initial distribu-
tion function P̂ t for Dt . This will only require the feedforward
propagation in the MLP based on the received new data feature
space in Dt .

We would like to note that alternative strategies might
be adopted in the P layer as well. For instance, technically
speaking, other types of the regression models, such as
support vector regression (SVR) [52] and classification and
regression tree (CART) [53], can also be integrated into the
proposed learning framework for the P layer design. This will
provide the flexibility of using the proposed approach as a
general learning framework according to different application
requirements. Let us take SVR as an example here. Suppose
y = f (x) is the estimated initial weight for instance x ∈ Rn

f (x) = 〈s, x〉 + b (14)

where s and b are the slope and intercept of linear estimation
function f (x), and 〈·, ·〉 denotes the dot product in Rn , e.g.,
||s||2 = 〈s, s〉. To obtain an accurate estimation f (x), (14)
can be transformed into a convex optimization problem

arg min
s

1
2 ‖s‖2

s.t. ‖y − 〈s, x〉 − b‖ < ε.

This assumes that such a f (x) actually exists that can
approximate 〈y, x〉 with ε precision, which in other words
makes the convex optimization feasible. Using the final distri-
bution function in current data chunk as the target value y for
the estimation of SVR, we can solve the convex optimization
problem and obtain s and b, which can be kept in memory
until the arrival of the next data chunk for estimating its initial
distribution function using (14). Interested readers can refer to
[54] for details on SVR.

Also, in our previous work in [13], a Euclidean distance
function was used to estimate the distance between different
data sets to facilitate weight updates, and we will compare
the performance of the proposed strategy in this paper with

1906 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

that approach as well. Indeed, Euclidean distance is a straight-
forward implementation of the proposed incremental learning
framework. The rationality behind this idea is that the similar-
ity between data residing in consecutive data chunks could be
quantized by their Euclidean distance in feature space. While
it is not as competitive as nonlinear mapping function such as
neural network, it has the advantage of processing/learning
the data in a significantly faster fashion. We will further
discuss and analyze this in the simulation section of this
paper.

We would also like to note that different mapping function
designs will have different levels of data accessibility require-
ment. For instance, in the aforementioned neural network-
based mapping function design, the proposed approach does
not require access to any previously received data, which fits
naturally into the incremental learning scenario as discussed
in many current work [14]. On the other hand, if Euclidean
distance function is adopted for the mapping function design,
one will need to access limited amount of previous data to
build the quantitative relationship between two consecutive
data chunks. Even under such a situation, we consider this
assumption is still valid and in fact has also been adopted in
the community. For instance, in [55], a small portion of data
in the previous data chunk is preserved over time to facilitate
the incremental learning process. In such situations, since only
a small part of previous data chunk need to be accessed at
any given time during the incremental learning period, the so-
called “capacity-overflow” issue does not exist.

IV. THEORETICAL ANALYSIS OF ADAIN

Inspired by the decision theoretic generalization analysis
of the AdaBoost algorithm [49], we present a theoretical
convergence analysis of the ADAIN framework in this section.
Here we consider a two-class classification problem with
stream data, in which the class label can be represented as
either 0 or 1 [48], [49]. We assume that the data chunks
presented to the learning system are all of the same size m.
We would like to note that this assumption is mainly for clear
presentation purpose rather than a limitation of the theoretical
analysis in this section. Furthermore, for clear presentation,
we assume the output of the mapping function of (1) can be
represented in the following way:

P̂ t−1 = ϕ(Dt−1,Dt , Pt−1) = wt−1
j · αt−1

j . (15)

In this way, we can consider any element of α =
[αt−1

1 , αt−1
2 , · · · , αt−1

m] as a real number in the range of
(0, 1]. This can be understood in an intuitive way: when
two examples in two consecutive data chunks are significantly
far away from each other in feature space, then the value
of mapping coefficient α should be very close to 0. On the
other hand, when these two examples are exactly matched
with each other, then the α should be equal to 1. We would
also like to point out that (15) in fact reflects a quantitative
expression as presented by the mapping function design in
(1). Conceptually speaking, any mapping function design as
discussed in Section III will be able to be represented in this
way. For instance, when Euclidean distance function is used

as the mapping function design, (15) can be easily justified
since the Euclidean distance function can directly estimate the
distances between different data sets, which can be used to
modify the previous weights to obtain the initial estimation
of the new weights for the new data set. When regression
models such as neural network MLP is used as the mapping
function design, (15) is still effective because the neural
network basically is used to find the mapping from the new
data set feature space to the weight space by properly tuning
the neural network weights through backpropagation training
rule. In this case, one can consider the α to be represented
by the neural network weights (i.e., a nonlinear function
approximator).

For two-class problems, we can rewrite the mathematical
representation of several equations in ADAIN framework for
our analysis convenience as follows. Note that the modi-
fied equations are in essence the same with the original
ones.

The error calculation as defined in (2) can be rewritten
as

εt−1 =
m∑

j=1

wt−1
j αt−1

j |ht−1(x j) − y j |. (16)

The weight update (3) can be rewritten as

wt
j = wt−1

j β
1−|ht−1(x j)−y j |
t−1 αt−1

j . (17)

Based on (17), we can get

m∑

j=1

wt
j =

m∑

j=1

wt−1
j β

1−|ht−1(x j)−y j |
t−1 αt−1

j . (18)

And finally, the h f inal defined in (4) can be rewritten as

h f inal(x) =

⎧
⎪⎨

⎪⎩
1 if

T∑

t=1

(
log

(
1

βt

)
ht (x)

)
≥ 1

2

T∑

t=1

log

(
1

βt

)

0 otherwise.
(19)

Given the inequation θγ ≤ 1 − (1 − θ)γ for θ ∈ [0, 1],
γ ∈ [0, 1] [49], we have

m∑

j=1

wt
j ≤

m∑

j=1

wt−1
j αt−1

j (1 − (1 − βt−1)(1 − |ht−1(x j) − y j |))

=
m∑

j=1

wt−1
j αt−1

j (βt−1 + |ht−1(x j) − y j |)

−βt−1

m∑

j=1

wt−1
j αt−1

j |ht−1(x j) − y j |

=
m∑

j=1

wt−1
j αt−1

j βt−1 −
m∑

j=1

wt−1
j (βt−1 − 1)εt−1

≤
m∑

j=1

wt−1
j αt−1

j 2βt−1 −
m∑

j=1

wt−1
j αt−1

j (βt−1 − 1)εt−1

=
m∑

j=1

wt−1
j αt−1

j (1 − (1 − βt−1)(1 − εt−1)). (20)

HE et al.: INCREMENTAL LEARNING FROM STREAM DATA 1907

Since α ∈ (0, 1], from (20) one can get

m∑

j=1

wt
j ≤

⎛

⎝
m∑

j=1

wt−1
j

⎞

⎠ (1 − (1 − εt−1)(1 − βt−1)). (21)

In this way, one can write (21) recursively

m∑

j=1

wt
j ≤

⎛

⎝
m∑

j=1

wt−1
j

⎞

⎠ (1 − (1 − εt−1)(1 − βt−1))

≤
⎛

⎝
m∑

j=1

wt−2
j

⎞

⎠ (1 − (1 − εt−1)(1 − βt−1))

·(1 − (1 − εt−2)(1 − βt−2))

≤ . . .

≤
t−1∏

i=1

(1 − (1 − εi)(1 − βi)). (22)

This means

m∑

j=1

wT +1
j ≤

T∏

t=1

(1 − (1 − εt)(1 − βt)). (23)

Similar to the AdaBoost analysis, the final hypothesis makes
a mistake on instance xi only if the following condition is
satisfied [49]

T∏

t=1

β
−|ht (xi)−yi |
t ≥

(
T∏

t=1

βt

)− 1
2

. (24)

To further understand this, we discuss two situations when
the final hypothesis makes a mistake. First, suppose the true
class label for instance xi is yi = 0. Then based on (24), one
can get

T =1∏

t=1

β
−ht (xi)
t ≥

(
T∏

t=1

βt

)− 1
2

⇒
T∑

t=1

(
log

1

βt

)
ht (xi) ≥ 1

2

T∑

t=1

log
1

βt

⇒ h f inal (xi) = 1. (25)

This is consistent with the conjecture made by (24) that
h f inal here makes a mistake on predicting the class label of
xi .

On the other hand, if the true class label for instance xi is
yi = 1. Based on (24), it can be inferred that

T∏

t=1

β
−(yi−ht (xi))
t ≥

(
T∏

t=1

βt

)− 1
2

⇒
T∑

t=1

log
1

βt
−

T∑

t=1

(
log

1

βt

)
ht (xi) ≥ 1

2

T∑

t=1

log
1

βt

⇒ 1

2

T∑

t=1

log
1

βt
≥

T∑

t=1

(
log

1

βt

)
ht (xi)

⇒ h f inal (xi) = 0. (26)

TABLE I

INFORMATION REGARDING THE SIMULATION DATA SETS

name # feature # example # class

Spambase 57 4601 2

Magic 10 19020 2

Waveform 40 5000 3

Sat 36 6435 6

This is also consistent with the conjecture made by (24) that
h f inal has made a mistake on predicting the class label of xi .

According to (17), at any given time during the incremental
learning period, the present weight can be represented by
applying (17) recursively

wT +1
i = d(i) ·

T∏

t=1

αt
i β

1−|ht (xi)−yi |
t

= d(i) ·
T∏

t=1

αT
i ·

T∏

t=1

β
1−|ht (xi)−yi |
t . (27)

Based on (24), one can get

T∏

t=1

β
1−|ht (xi)−yi |
t ≥

(
T∏

t=1

βt

) 1
2

. (28)

It is also straightforward to have

m∑

j=1

wT +1
j ≥

∑

j : h f inal (x j) �=y j

wT +1
j . (29)

Therefore, from (27)–(29), one can get

m∑

j=1

wT +1
j ≥

⎛

⎝
∑

j : h f inal (x j) �=y j

d(j) ·
T∏

t=1

αt
j

⎞

⎠ ·
(

T∏

t=1

βt

)
. (30)

Let us define k = 1/(
∏T

t=1(mini αt
i)), based on (30), we

have
m∑

j=1

wT +1
j ≥ 1

k
· σ

(
T∏

t=1

βt

) 1
2

(31)

where σ = ∑
j : h f inal (x j) �=y j

d(j) is the training error of the
final hypothesis h f inal .

By combining together (23) and (31), one can get

σ ≤
T∏

t=1

k · 1 − (1 − εt)(1 − βt)√
βt

. (32)

Similar in AdaBoost method, if we assume the base clas-
sifier can do better than random guess, we can define εt =
(1/2) − γt , where γt ∈ (0, (1/2)), then

σ ≤
T∏

t=1

√
1 − 4γ 2

t
∏T

t=1(min
i

αt
i)

. (33)

Equation (33) provides an upper bound for the training error
of the final hypothesis h f inal .

1908 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

TABLE II

AVERAGED PREDICTION ACCURACY

Prediction accuracy
Data sets Methods

class 1 class 2 class 3 class 4 class 5 class 6 Overall

ADAIN.MLP 0.8820 0.9352 − − − − 0.9142
ADAIN.SVR 0.8990 0.9205 − − − − 0.9120

IMORL 0.9106 0.8929 − − − − 0.9000
Accumulation 0.8803 0.9190 − − − − 0.9038

Spambase

Learn++ 0.8532 0.9561 − − − − 0.9143
ADAIN.MLP 0.9315 0.7137 − − − − 0.8549
ADAIN.SVR 0.9319 0.7395 − − − − 0.8644

IMORL 0.8404 0.7836 − − − − 0.8205
Accumulation 0.8670 0.7410 − − − − 0.8268

Magic

Learn++ 0.9523 0.6786 − − − − 0.8547

ADAIN.MLP 0.7843 0.8230 0.8193 − − − 0.8132
ADAIN.SVR 0.7576 0.8198 0.8474 − − − 0.8077

IMORL 0.7575 0.8000 0.8009 − − − 0.7814
Accumulation 0.7070 0.7558 0.7534 − − − 0.7384

Waveform

Learn++ 0.7870 0.8360 0.9072 − − − 0.8428
ADAIN.MLP 0.9602 0.9131 0.9169 0.4837 0.6417 0.8494 0.8387
ADAIN.SVR 0.9584 0.8889 0.9305 0.5180 0.7235 0.8345 0.8471

IMORL 0.9000 0.8918 0.8566 0.5653 0.6841 0.7897 0.8079
Accumulation 0.9452 0.9473 0.8697 0.5316 0.7971 0.8499 0.8454

Sat

Learn++ 0.9696 0.8860 0.9327 0.5651 0.6958 0.8545 0.8558

TABLE III

RUNNING TIME FOR ADAIN.SVR AND LEARN++ (in seconds)

Data set
ADAIN.SVR Learn++

training testing training testing

Spambase 128.42 2.19 600.26 246.62

Magic 7256.18 14.36 107 256.33 1623.74

Waveform 163.51 3.39 548.84 238.1016

Sat 352.31 4.95 1246.62 346.53

V. SIMULATION ANALYSIS

In order to validate the performance of the proposed frame-
work, four real-world data sets with varied size and number
of classes from UCI machine learning repository [56] are
employed for empirical study in this research. The detailed
information of these data sets can be found in Table I.

In this simulation, each data set is initially randomly sliced
into 20 chunks with identical size. At each run, one chunk is
randomly selected to be the testing data, and the remaining
19 chunks are sequentially fed to the proposed framework.
Simulation results for each data sets are averaged across
20 runs. CART is employed as the base learner in our current
study. For the nonlinear mapping function design, we adopted
the MLP structure with ten hidden layer neurons and one
output neuron. The number of input neurons is set to be equal
to the number of features for each data set. The training epochs
of the MLP is set to be 1000. As we mentioned at the end of
Section III-B, other regression models can also be integrated
into the proposed framework. To that end, we also employ
the polynomial SVR model as the mapping function for the
proposed framework. For clear presentation, we use ADAIN to
abbreviate the proposed adaptive incremental learning frame-
work. Therefore, these two design strategies are represented as

“ADAIN.MLP” and “ADAIN.SVR” in the remaining of this
paper.

In our experiment, we have included Learn++ [57], IMORL
[13], and the data accumulation strategy as discussed in
Section II (abbreviated as “Accumulation” in the rest of this
paper). Our major focus here is to demonstrate that the
proposed framework can automatically accumulate experience
over time, and use such knowledge to benefit future learning
and prediction process to achieve competitive results.

Table II shows the numerical accuracy for these data sets,
including both the overall classification performance as well as
the prediction accuracy for each individual class for each data
set. It can be intuitively observed that the proposed approach
can remarkably improve the learning performance compared
to the method in [13] and data accumulation learning strategy.
As expected, Learn++ seems to be able to provide most of
the competitive results across these data sets. This is mainly
because Learn++ is built on the “Ensemble-of-Ensemble”
strategy. However, this “Ensemble-of-Ensemble” strategy also
means Learn++ requires much more computational resources.
Table III shows the one round running time of ADAIN.SVR
and Learn++ for all data sets. Obviously, Learn++ spends
much more time than ADAIN.SVR in learning from streamed
data chunks. Particularly, when the size of the data set is
large, e.g., magic data set, the time consumption of Learn++
grows exponentially, which limits its scalability to handle
large-scale stream data. Fig. 4 visualizes the overall prediction
accuracy tendency over time for algorithms under comparison,
where Fig. 4(a)–(d) represents the data sets “spambase,”
“magic,” “waveform,” and “sat,” respectively. Learn++ has
been excluded from these figures, since it creates multiple
hypotheses for each data chunk. From these figures, one
can clearly see that the ADAIN can improve its learning
performance over time, which means the system can adap-

HE et al.: INCREMENTAL LEARNING FROM STREAM DATA 1909

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

2 4 6 8 10 12 14 16 18
Number of classifiers

2 4 6 8 10 12 14 16 18
Number of classifiers

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy
ADAIN.MLP

ADAIN.SVR
Accumulation

IMORL

(a)

2 4 6 8 10 12 14 16 18
0.76

0.78

0.8

0.82

0.84

0.86

0.88

Number of classifiers

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

ADAIN.MLP

ADAIN.SVR

Accumulation
IMORL

(b)

0.65

0.7

0.75

0.8

0.85

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

ADAIN.MLP

ADAIN.SVR

Accumulation

IMORL

(c)

2 4 6 8 10 12 14 16 18
0.65

0.7

0.75

0.8

0.85

0.9

Number of classifiers

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

ADAIN.MLP

ADAIN.SVR

Accumulation

IMORL

(d)

Fig. 4. Prediction overall accuracy. (a) Spambase. (b) Magic. (c) Waveform.
(d) Sat.

tively learn from stream data, and accumulate knowledge to
facilitate the future learning and decision-making processes.
The reason why ADAIN provides a much better prediction
results than IMORL is that by employing a strong function
approximator other than Euclidean distance-based approach as
in IMORL, ADAIN can more accurately estimate the initial
data distribution for each data chunk based on the knowledge
obtained from the previous one.

We now conduct the significance tests to have an in-depth
understanding of the performance across all the methods.
The signed test [58] calculates the significance between two
algorithms by counting the wins, losses, and ties of all the runs.
For 20 random runs, one algorithm should win at least 15 times
under a confidence level of 0.05 to reject a null hypothesis,
i.e., statistically outperforming the other one [58]. Our test
results show that neither ADAIN.MLP nor ADAIN.SVR can
win over one another through the signed test. We also use the
Hotelling’s T-square statistic test, abbreviated as “t-test,” to
measure the statistical significance of the prediction accuracy
between ADAIN.MLP and other approaches. Table IV shows
the t-test result with confidence level of 0.05 (i.e., |Z | should
be larger than or equal to 1.96 to reject the null hypothesis).
From Table IV, one can find that ADAIN.MLP can statistically
outperform IMORL and the data accumulation strategy for
most of the data sets. On the other hand, Learn++ is statisti-
cally the same with ADAIN.MLP in terms of the prediction
accuracy for three out of the four data sets.

To have a more comprehensive analysis of the performance,
we also employ receiver operating characteristics (ROC) curve
[59] to demonstrate the effectiveness of the proposed ADAIN
framework. The data accumulation strategy is excluded in this
case, since a single CART classifier only outputs hard predic-
tion results, i.e., corresponding to just one point in ROC space.
The area under ROC curve (AUC) assessments are shown

ROC Curve l
1

ROC Curve l
2

X
2

fp _rate1

fp _rate2

X
2

X
1

X
3

X
3

Y
2

Y
2

Y
1

Z
2

Z
2

Z
1

Averaged ROC Curve

X

Point on ROC Curve 1:

Point on ROC Curve 2:

Point on averaged ROC Curve

Fig. 5. Vertical averaging approach of ROC curves.

TABLE IV

t -TEST FOR PREDICTION ACCURACY

Data set
ADAIN.MLP IMORL |Z | Accept or
μ σ μ σ reject H0

Spambase 0.9142 0.0230 0.8999 0.0215 2.0312 Reject
Magic 0.8549 0.0091 0.8205 0.0168 8.0576 Reject
Waveform 0.8132 0.0102 0.7814 0.0117 9.1696 Reject
Sat 0.8387 0.0493 0.8079 0.0351 2.2736 Reject

Data set
ADAIN.MLP Accumulation |Z | Accept or
μ σ μ σ reject H0

Spambase 0.9142 0.0230 0.9038 0.0057 1.9628 Reject
Magic 0.8549 0.0091 0.8227 0.0131 9.0142 Reject
Waveform 0.8132 0.0102 0.7384 0.0073 26.6892 Reject
Sat 0.8387 0.0493 0.8454 0.0593 0.3885 Accept

Data set
ADAIN.MLP Learn++

|Z | Accept or
μ σ μ σ reject H0

Spambase 0.9142 0.0230 0.9143 0.0195 0.0148 Accept
Magic 0.8549 0.0091 0.8547 0.0071 0.0775 Accept
Waveform 0.8132 0.0102 0.8428 0.0091 9.6841 Reject
Sat 0.8387 0.0493 0.8558 0.0221 1.4155 Accept

in Table V to quantify the comparison among ADAIN.MLP,
ADAIN.SVR, IMORL, and Learn++ in experiment. Note here
in lieu of simply averaging the AUCs across the 20 runs, the
averaged AUCs are derived based on the vertical averaging
technique as suggested in [59]. For data sets with more than
two classes, their averaged AUCs are calculated by summing
the averaged AUC of the reference ROC curves weighted by
the class ratio [60]. Specifically, our implementation of the
vertical averaging method is illustrated in Fig. 5. Assume one
would like to average two ROC curves: l1 and l2, each of
which is formed by a series of points in the ROC space. The
first step is to evenly divide the range of f p_rate into a set of
intervals. Then at each interval, find the corresponding t p_rate
values of each ROC curve and average them. In Fig. 5, X1
and Y1 are the points from l1 and l2 corresponding to the
interval f p_rate1. By averaging their t p_rate values, the
corresponding ROC point Z1 on the averaged ROC curve is
obtained. However, there exist some ROC curves which do not

1910 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

TABLE V

AVERAGED AUC

Data set
Area Under ROC Curve

ADAIN.MLP ADAIN.SVR IMORL Learn++
Spambase 0.9566 0.9576 0.9511 0.9592
Magic 0.9090 0.9198 0.8896 0.9101
Waveform 0.9456 0.942 0.9262 0.961
Sat 0.9716 0.9734 0.9665 0.9761

have corresponding points on certain intervals. In this case, one
can use the linear interpolation method to obtain the averaged
ROC points. For instance, in Fig. 5, the point X̄ (corresponding
to f p_rate2) is calculated based on the linear interpolation of
the two neighboring points X2 and X3. Once X̄ is obtained,
it can be averaged with Y2 to get the corresponding Z2 point
on the averaged ROC curve.

The online version boosting algorithm [15] (abbreviated as
“BoostOnline” in the rest of this paper) is an important tech-
nique to address incremental learning problems using the idea
of AdaBoost. However, the difference between BoostOnline
and ADAIN is two-fold. First, BoostOnline maintains a fixed
number of classifiers throughout its learning life. Whenever
there is a single training data point available, all classifiers
would be applied to learn from it. On the other hand, a new
classifier would be created for ADAIN so long as there is
a chunk of new training data received. Second, BoostOnline
requires the base learning algorithm itself to be able to learn
incrementally, while ADAIN does not place such restriction
on base learning algorithms. This provides the flexibility of
adopting many of the standard off-the-shelf base learning
algorithms into the ADAIN framework.

Here we adopt neural network MLP with 100 training
epochs as the base classifier for both BoostOnline and
ADAIN.MLP to facilitate the direct comparison between them.
The number of classifiers for BoostOnline is set to be 20,
which is consistent with the number of created classifiers after
the training stage for ADAIN. We also apply the nonlinear
normalization method [61], [62] to normalize the original
feature set of all data sets to facilitate training MLP classifier.
In order to compare the proposed ADAIN framework with the
off-the-shelf implementation of online learning methods, we
also apply Vowpal Wabbit (VW) platform [21] to learn from
the data sets.

Table VI shows the average overall prediction accuracy and
AUC of ADAIN.MLP and BoostOnline on all data sets for
simulation across 20 random runs. Since it requires some
tweaks on class label to facilitate multiclass classification on
VW, in this paper we only present the results of “spambase”
and “magic” data sets for VW. One can see that ADAIN.MLP
outperforms BoostOnline for all data sets. Regarding com-
parison with VW, ADAIN.MLP performs generally worse
than VW on learning from spambase data set [although
ADAIN.MLP achieves higher OA than VW (0.9302 versus
0.9212), its AUC is worse than VW (0.8777 versus 0.9736)].
However, it outperforms VW on learning from magic data set
in terms of both OA and AUC. Since magic data set has the
largest size across all data sets for simulation, we consider

TABLE VI

OVERALL PREDICTION ACCURACY AND AUC FOR ADAIN.MLP

AND BOOSTONLINE

Data set
ADAIN.MLP BoostOnline VW
OA AUC OA AUC OA AUC

Spambase 0.9302 0.8777 0.9003 0.8709 0.9212 0.9736
Magic 0.8553 0.9100 0.7448 0.8056 0.8223 0.8649
Waveform 0.8530 0.9649 0.7393 0.8949 − −
Sat 0.8484 0.9781 0.7211 0.9393 − −

10 15 20 25 30 35 40 45 50
0.895

0.9

0.905

0.91

0.915

0.92

0.925

Number of total data chunks

(a) (b)

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

10 15 20 25 30 35 40 45 50
0.95

0.955

0.96

0.965

Number of total data chunks

A
re

a
un

de
r

R
O

C
 c

ur
ve

Fig. 6. Simulation results for different number of total data chunks for
training. (a) Overall prediction accuracy. (b) Area under ROC curve.

ADAIN.MLP still remains competitive against VW in this
case.

In order to study the effect of different chunk sizes, here
we divide the “spamabase” data set into 10, 20, 30, 40, and
50 chunks, and then apply ADAIN.MLP to learn from these
different scenarios. The corresponding prediction accuracy
and AUC averaged across 20 random runs are plotted in
Fig. 6(a) and (b), respectively. From these results one can
see, initially ADAIN’s performance is getting worse with the
increase of the number of chunks. This could be loosely
based on the fact that with the increase of number of chunks,
the available data instances in each chunk will be reduced,
therefore degrading the classifier’s learning and generalization
performance. However, when the total number of chunks is set
to 50, we notice that the ADAIN can improve its performance
in this case. We consider this is probably related to the fact
that although the number of data instances in each chunk is
reduced, the number of chunks is increased therefore providing
a strong opportunity for the proposed approach to catch up and
learn from such a relatively large number of chunks. These
results suggest there might be a balancing-point with respect
to the number of chunks and number of data instances in each
chunk to achieve the optimal learning performance.

VI. NEW CONCEPT LEARNING FOR ADAIN

As we have discussed in Section I, incremental learning
should be adapted to new concepts, which may be presented
in the middle of the learning period. In this section, we would
like to focus on demonstrating our proposed framework’s
capability to handle new concepts. To this end, we dedicate
the “waveform” data set to incremental learning with new
concepts. To do this, all examples in “waveform” data set
are randomly and evenly divided into 40 data chunks, except
those belonging to class 3, which are not included into the

HE et al.: INCREMENTAL LEARNING FROM STREAM DATA 1911

5 10 15 20 25 30 35
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of classifiers

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

ADAIN.Senior

ADAIN.Junior

Fig. 7. New concept learning for “waveform” data set.

incremental learning until the 21st data chunk. The base learner
and the mapping function are CART and MLP with the same
configuration described in Section V.

Fig. 7 shows the overall accuracy tendency of ADAIN for
the described learning scenario. The dashed line is for ADAIN
sticking to the old concepts during the learning life. We name
it “ADAIN.Senior” since this kind of learning is obsessive to
the obsolete concepts and the past experience. Its prediction
accuracy is understandably poor since its classification on all
testing data of class 3 would be wrong. The solid line rep-
resents the performance of ADAIN for new concept learning,
from which one can see ADAIN quickly makes a difference
when the new concept is introduced and shows a significantly
improved learning ability till the end of the learning process.
This kind of learning can quickly keep updated to the latest
emerging new concepts, thus we call it “ADAIN.Junior.”

We also would like to explore the new concept learning
ability of ADAIN on multiple new concepts. We select the
“sat” data set with six classes as an example here. We evenly
spread the data of class 1 and class 2 into 60 data chunks.
Data belonging to class 3 and class 4 will be introduced
since the 11th data chunk, and data from class 5 and class
6 will be introduced since the 31st data chunk. In this case,
there are three kinds of ADAIN carried out. The first one,
named “ADAIN.Senior,” will only learn class 1 and class 2
throughout the entire learning life. The second one, named
“ADAIN.Junior1,” will face the new concepts of class 3 and
class 4 from the 11th data chunk. Finally, the last one, named
“ADAIN.Junior2,” will face the new concepts of class 3 and
class 4 from the 11th data chunk as well as the new concepts
of class 5 and class 6 from the 31st data chunk. The learning
results are illustrated in Fig. 8. It is apparently astonishing to
find out that although ADAIN.Junior2 can still significantly
outperform ADAIN.Senior, its performance is worse than
ADAIN.Junior1.

This is an interesting observation and we consider the reason
might be related to the “aging” mechanism during the long
term incremental learning. When a long sequence of data
chunks are presented over time, the learning system may need
to prune the obsolete hypothesis to better keep tuned on the
evolving data stream. Retaining all hypotheses in such scenario
not only means excessively occupied memory space but also
being over obsessive to the obsolete concepts. By follow-

10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

Number of classifiers

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

ADAIN.Senior

ADAIN.Junior2

ADAIN.Junior1

Fig. 8. New concept learning for “sat” data set.

10 20 30 40 50

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of classifiers

O
ve

ra
ll

pr
ed

ic
tio

n
ac

cu
ra

cy

ADAIN.Junior1

ADAIN.Junior2

Fig. 9. Pruning hypotheses before the 1st introduction of new concepts.

ing this philosophy, for ADAIN.Junior1 and ADAIN.Junior2,
we abandon the hypothesis created before the class 3 and
class 4 are introduced (before the 11th data chunk), and
re-test the over-all prediction accuracy tendency in Fig. 9.
One can clearly see that ADAIN.Junior2 now can outperform
ADAIN.Junior1. From this discussion, we may conclude that
by appropriate pruning obsolete hypotheses, ADAIN can sig-
nificantly be improved for prediction performance particularly
for evolving data stream.

The other benefit of pruning obsolete hypotheses is the
ecominization of memory space to store hypotheses and the
reduction of time for classifying query instances. This is
especially important when the proposed ADAIN has to be
scaled up to process data stream with large number of data
chunks. One cannot keep all hypotheses in this case, and a
decision must be made in terms of what is most useful. The
Forgetron learning algorithm proposed in [63] is an important
effort to explore using fixed budget of memory for online
learning from data stream, which is achieved by gradually
forgetting active examples. When there is no new class concept
presented in the middle of data stream, another method of
pruning hypotheses is to maintain a priority queue Q of a fixed
capacity H , and follow the procedure specified by Algorithm 2
when a new hypothesis hn is created.

Fig. 10 illustrates the results of learning from “magic” data
set divided into 500 data chunks after applying this pruning

1912 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

Algorithm 2 Procedure of pruning hypothesis
Require:

priority queue Q of capacity H
a new hypothesis hn with weight log 1

βn
Ensure:

if (|Q| < H) then
Q.insert_with_prioity(hn, log 1

βn
)

else
(hk , wk) = Q.pull_lowest_priority_element()
{wk is the associated priority/weight with hypothesis hk}
if log 1

βn
> wk then

Q.insert_with_prioity(hn, log 1
βn

)
else

Q.insert_with_prioity(hk , wk)
end if

end if

0 100 200 300 400 500

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of classifiers

Pr
ed

ic
tio

n
ac

cu
ra

cy

|H| = 50

|H| = 100 |H| = ∞|H| = 250

Fig. 10. Performance of ADAIN on “magic” data set using Q of different H .

method when H is set to be 50, 100, 250, and ∞, respec-
tively. Note H = ∞ means keeping all hypotheses across
the learning life. It can be concluded that using a priority
queue Q of small capacity (H = 50 and H = 100) would
result in significantly deteriorated performance. However when
capacity of Q is set to be large enough (H = 250), the
performance of ADAIN can approximate that of retaining all
hypotheses in learning life. One might need to investigate to
find such a threshold to achieve best speed-performance trade-
off.

VII. CONCLUSION

In this paper, we proposed an adaptive incremental learning
framework for stream data. Based on the adaptive learning and
ensemble learning methodology, the proposed ADAIN frame-
work can automatically learn from data stream, accumulating
experience over time, and use such knowledge to facilitate
future learning and decision-making processes. Simulation
results on various data sets and their corresponding statistical
tests show the effectiveness of the proposed framework. We
would like to note that it is not our intention to compete
for the best classification accuracy across all the data sets
of the proposed approach with those of existing methods.
Instead, our focus in this paper is to investigate the important

underlying question of incremental learning for stream data.
How to effective integrate previously learned knowledge into
currently received data to improve learning from new raw
data, and meanwhile accumulate such experience over time to
support future decision-making processes. Motivated by the
results presented in this paper, we believe that the proposed
ADAIN framework can achieve this goal.

As a new learning framework, there are a number of
interesting topics along this direction for future research. For
instance, it is widely recognized that concept drifting/shifting
is a critical issue for incremental learning with stream data.
While in our current paper we have had a light touch on this
problem, a more in-depth study of this issue from both analyt-
ical and empirical analysis point of view will be important to
fully understand the behavior of the proposed approach when
facing such challenges. For instance, how does the proposed
approach handle the trade-off between the outdated experience
and new knowledge for extremely long-sequence stream data?
How fast can this approach adjust its decision boundary to
the new concepts? One possible way to deal with this is to
introduce a mechanism with more complicated decay factor
and/or momentum term on this. In our current paper, we
briefly touched this issue in Section VI and will continue to
investigate this problem in a more systematic and principled
way. Furthermore, in this paper, we only consider classification
problems. It would be interesting to extend this framework
to regression learning problems for different real applica-
tions. Finally, large-scale empirical study of this approach on
different real-world data sets under different configurations
is necessary to fully demonstrate the effectiveness of this
approach across different application domains. For instance,
as we discussed in Section V, the chunk size will have
an important impact on the final learning performance. This
presents useful considerations in practical applications such
as data acquisition, data buffer size, and sampling frequency
to achieve the desired learning performance under different
resource limitations. Also, as we pointed out in Section II, how
to handle the data streams with imbalanced class distributions,
a common phenomenon in many data-intensive applications,
has been a critical challenge in the community (see the survey
paper of [45] for details). It will be important to analyze
the performance and potential improvements for the proposed
approach to handle such a challenging issue to address real-
world needs. We are currently investigating all these issues
and their results will be reported in future research. Motivated
by our results in this paper, we believe the proposed approach
will not only provide important insight into the fundamental
problem of incremental learning with stream data, but it can
also provide useful techniques and solutions for different real-
world stream data analysis applications.

REFERENCES

[1] H. Zhao and P. C. Yuen, “Incremental linear discriminant analysis for
face recognition,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern.,
vol. 38, no. 1, pp. 210–221, Feb. 2008.

[2] J. R. Millan, “Rapid, safe, and incremental learning of navigation
strategies,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 26,
no. 3, pp. 408–420, Jun. 1996.

HE et al.: INCREMENTAL LEARNING FROM STREAM DATA 1913

[3] G. Y. Chen and W. H. Tsai, “An incremental-learning-by-navigation
approach to vision-based autonomous land vehicle guidance in indoor
environments using vertical line information and multiweighted gener-
alized Hough transform technique,” IEEE Trans. Syst., Man, Cybern.,
Part B: Cybern., vol. 28, no. 5, pp. 740–748, Oct. 1998.

[4] R. B. Segal and J. O. Kephart, “Incremental learning in swiftfile,” in
Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 863–870.

[5] G. G. Yen and P. Meesad, “An effective neuro-fuzzy paradigm for
machinery condition health monitoring,” IEEE Trans. Syst., Man,
Cybern., Part B: Cybern., vol. 31, no. 4, pp. 523–536, Aug.
2001.

[6] J. Su, J. Wang, and Y. Xi, “Incremental learning with balanced update
on receptive fields for multi-sensor data fusion,” IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern., vol. 34, no. 1, pp. 659–665, Feb.
2004.

[7] S. U. Guan and F. Zhu, “An incremental approach to genetic-algorithms-
based classification,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern.,
vol. 35, no. 2, pp. 227–239, Apr. 2005.

[8] Y. Cao, H. He, and H. Huang, “Lift: A new framework of learning from
testing data for face recognition,” Neurocomputing, vol. 74, no. 6, pp.
916–929, 2011.

[9] M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zollner, “Incremental
learning of tasks from user demonstrations, past experiences, and vocal
comments,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 37,
no. 2, pp. 322–332, Apr. 2007.

[10] A. Sharma, “A note on batch and incremental learnability,” J. Comput.
Syst. Sci., vol. 56, no. 3, pp. 272–276, Jun. 1998.

[11] S. Lange and G. Grieser, “On the power of incremental learning,” Theor.
Comput. Sci., vol. 288, no. 2, pp. 277–307, Oct. 2002.

[12] Z.-H. Zhou and Z.-Q. Chen, “Abstract hybrid decision tree,” Knowl.-
Based Syst., vol. 15, no. 8, pp. 515–528, 2002.

[13] H. He and S. Chen, “IMORL: Incremental multiple-object recognition
and localization,” IEEE Trans. Neural Netw., vol. 19, no. 10, pp. 1727–
1738, Oct. 2008.

[14] M. D. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.NC: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Trans. Neural Netw.,
vol. 20, no. 1, pp. 152–168, Jan. 2009.

[15] N. Oza and S. Russell, “Online bagging and boosting,” in Proc. Artif.
Intell. Stat., vol. 3. Oct. 2006, pp. 105–112.

[16] H. Grabner and H. Bischof, “On-line boosting and vision,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2006, pp. 260–267.

[17] K. Crammar, O. Dekel, J. Keshet, S. Shalev-Shawartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7, pp.
551–585, Mar. 2006.

[18] G. Gasso, A. Pappaioannou, M. Spivak, and L. Bottou, “Batch and
online learning algorithms for nonconvex Neyman-Pearson classifica-
tion,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 28–47, Apr.
2011.

[19] S. Ertekin, L. Bottou, and C. L. Giles, “Nonconvex online support vector
machines,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 2, pp.
368–381, Feb. 2011.

[20] Y. Singer and N. Srebro, “Pegasos: Primal estimated sub-gradient solver
for SVM,” in Proc. Int. Conf. Mach. Learn., 2007, pp. 807–814.

[21] Vowpal Wabbit Project [Online]. Available: http://github.com/John-
Langford/vowpal_wabbit/wiki

[22] H. He and J. A. Starzyk, “Online dynamic value system for machine
learning,” in Proc. 4th Int. Symp. Neural Netw.: Adv. Neural Netw.,
vol. 4491. 2007, pp. 441–448.

[23] H. He and J. A. Starzyk, “A self-organizing learning array system for
power quality classification based on wavelet transform,” IEEE Trans.
Power Delivery, vol. 21, no. 1, pp. 286–295, Jan. 2006.

[24] J. A. Starzyk, Z. Zhu, and H. He, “Self-organizing learning array and
its application to economic and financial problems,” in Proc. Joint Conf.
Inf. Syst., Cary, NC, 2003, pp. 1–3.

[25] Z. Zhu, H. He, J. A. Statzyk, and C. Tseng, “Self-organizing learning
array and its application to economic and financial problems,” Inf. Sci.:
Int. J., vol. 177, no. 5, pp. 1180–1192, Mar. 2007.

[26] B. Fritzke, “A growing neural gas network learns topologies,” in
Advances in Neural Information Processing Systems 7. Cambridge, MA:
MIT Press, 1995, pp. 625–632.

[27] B. Fritzke, “Incremental learning of local linear mappings,” in Proc. Int.
Conf. Artif. Neural Netw., 1995, pp. 217–222.

[28] T. M. Martinetz and K. J. Schulten, Artificial Neural Networks. Ams-
terdam, The Netherlands: North-Holland, 1991, pp. 397–402.

[29] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps,” IEEE Trans.
Neural Netw., vol. 3, no. 5, pp. 698–713, Sep. 1992.

[30] J. R. Williamson, “Gaussian ARTMAP: A neural network for fast
incremental learning of noisy multidimensional maps,” Neural Netw.,
vol. 9, no. 5, pp. 881–897, Jul. 1996.

[31] C. P. Lim and R. F. Harrison, “An incremental adaptive network for
on-line supervised learning and probability estimation,” Neural Netw.,
vol. 10, no. 5, pp. 925–939, Jul. 1997.

[32] F. H. Hamker, “Life-long learning cell structures–continuously learning
without catastrophic interference,” Neural Netw., vol. 14, nos. 4–5, pp.
551–573, May 2001.

[33] G. C. Anagnostopoulos and M. Georgiopoulos, “Ellipsoid ART and
ARTMAP for incremental clustering and classification,” in Proc. Int.
Joint Conf. Neural Netw., vol. 2. Washington D.C., Jul. 2001, pp. 1221–
1226.

[34] S. Salzberg, “A nearest hyperrectangle learning method,” Mach. Learn.,
vol. 6, no. 3, pp. 277–309, 1991.

[35] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for
clustering and classification,” IEEE Trans. Neural Netw., vol. 11, no. 3,
pp. 769–783, May 2000.

[36] A. Bouchachia, “Incremental learning via function decomposition,” in
Proc. Int. Conf. Mach. Learn. Appl., 2006, pp. 63–68.

[37] A. Bouchachia, B. Gabrys, and Z. Sahel, “Overview of some incremental
learning algorithms,” in Proc. IEEE Int. Conf. Fuzzy Syst., London, U.K.,
Jul. 2007, pp. 1–6.

[38] P. J. Werbos, “Intelligence in the brain: A theory of how it works and
how to build it,” Neural Netw., vol. 22, no. 3, pp. 200–212, Apr. 2009.

[39] H. G. Zhang, Y. H. Luo, and D. Liu, “Neural-network-based near-
optimal control for a class of discrete-time affine nonlinear systems with
control constraints,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–
1503, Sep. 2009.

[40] F. Y. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems with
ε-error bound,” IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 24–36,
Jan. 2011.

[41] D. Liu, Y. Zhang, and H. G. Zhang, “A self-learning call admission
control scheme for CDMA cellular networks,” IEEE Trans. Neural
Netw., vol. 16, no. 5, pp. 1219–1228, Sep. 2005.

[42] J. Si and Y. T. Wang, “Online learning control by association and
reinforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[43] J. Fu, H. He, and X. Zhou, “Adaptive learning and control for MIMO
system based on adaptive dynamic programming,” IEEE Trans. Neural
Netw., vol. 22, no. 7, pp. 1133–1148, Jul. 2011.

[44] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line
learning and optimization based on adaptive dynamic programming,”
Neurocomputing, 2011, to be published.

[45] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[46] S. Chen, H. He, and E. A. Garcia, “RAMOBoost: Ranked minority
oversampling in boosting,” IEEE Trans. Neural Netw., vol. 21, no. 10,
pp. 1624–1642, Oct. 2010.

[47] S. Chen and H. He, “Toward incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach,”
Evolv. Syst., vol. 2, no. 1, pp. 35–50, 2011.

[48] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proc. Int. Conf. Mach. Learn., 1996, pp. 148–156.

[49] Y. Freund and R. Schapire, “Decision-theoretic generalization of on-
line learning and application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, 1997.

[50] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[51] P. J. Werbos, “Backpropagation: Basics and new developments,” in The
Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed.
Cambridge, MA: MIT Press, 1995, pp. 134–39.

[52] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Proc. Adv. Neural Inf. Process.
Syst. 9, 1996, pp. 155–161.

[53] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and Regression Trees. New York: Chapman & Hall, 1984.

[54] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Stat. Comput., vol. 14, no. 3, pp. 199–222, 2003.

[55] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining
concept-drifting streams with skewed distribution,” in Proc. SIAM Int.
Conf. Data Min., Minneapolis, MN, 2007, pp. 3–14.

1914 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

[56] A. Asuncion and D. J. Newman. (2007). UCI Machine Learning Repos-
itory [Online]. Available: http://www.ics.uci.edu/∼mlearn/ MLReposi-
tory.html

[57] R. Polikar, L. Udpa, S. Udpa, and V. Honavar, “Learn++: An incre-
mental learning algorithm for supervised neural networks,” IEEE Trans.
Syst., Man, Cybern., Part C: Appl. Rev., vol. 31, no. 4, pp. 497–508,
Nov. 2001.

[58] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. New York: Chapman & Hall, 2000.

[59] T. Fawcett, “ROC graphs: Notes and practical considerations for
researchers,” HP Laboratories, Palo Alto, CA, Tech. Rep. HPL-2003-
4, Mar. 2004.

[60] F. Provost and P. Domingos, “Well-trained pets: Improving probability
estimation trees,” in Proc. CeDER Working Pap., 2001, no. IS-00-04,
pp. 1–25.

[61] H. He and X. Shan, “A ranked subspace learning method for gene
expression data classification,” in Proc. Int. Conf. Artif. Intell., 2007,
pp. 358–364.

[62] H. He, Self-Adaptive Systems for Machine Intelligence. New York:
Wiley, 2011.

[63] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The Forgetron: A kernel-
based perceptron on a budget,” SIAM J. Comput., vol. 37, no. 5, pp.
1342–1372, 2008.

Haibo He (SM’11) received the B.S. and M.S.
degrees in electrical engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 1999 and 2002, respectively, and the
Ph.D. degree in electrical engineering from Ohio
University, Athens, in 2006.

He is currently an Assistant Professor with the
Department of Electrical, Computer, and Biomedical
Engineering, University of Rhode Island, Kingston.
From 2006 to 2009, he was an Assistant Professor
with the Department of Electrical and Computer

Engineering, Stevens Institute of Technology, Hoboken, NJ. He has published
one research book (Wiley), edited six conference proceedings (Springer), and
authored or co-authored over 80 peer-reviewed journal and conference papers.
His researches have been covered by national and international media such as
the IEEE Smart Grid Newsletter, the Wall Street Journal, and Providence
Business News. His current research interests include adaptive dynamic
programming, machine learning, computational intelligence, very large scale
integration and field-programmable gate array design, and various applications
such as smart grid.

Dr. He is an Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS and the IEEE TRANSACTIONS ON SMART GRID. He received
the National Science Foundation CAREER Award in 2011 and the Providence
Business News Rising Star Innovator in 2011.

Sheng Chen (S’06) received the B.S. and M.S.
degrees in control science and engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2004 and 2007, respectively, and
the Ph.D. degree in computer engineering from the
Stevens Institute of Technology, Hoboken, NJ, in
2011.

His current research interests include computa-
tional intelligence, statistical machine learning, and
pattern recognition, as well as their applications such
as record matching in database and computational

linguistics.

Kang Li (M’05) received the B.Sc. degree from
Xiangtan University, Hunan, China, in 1989, the
M.Sc. degree from the Harbin Institute of Technol-
ogy, Harbin, China, in 1992, and the Ph.D. degree
from Shanghai Jiaotong University, Shanghai, China,
in 1995.

He is currently a Reader with the Intelligent Sys-
tems and Control group, Queens University Belfast,
Belfast, U.K., and the current Secretary of the IEEE
U.K. and the Republic of Ireland Section. He has
published over 160 papers in his areas of expertise.

His current research interests include nonlinear system modeling, identifi-
cation and controls, bio-inspired computational intelligence, fault-diagnosis
and detection, with recent applications on energy efficiency and pollution
reduction techniques in power generation plants and power systems, and
polymer extrusion processes. He is also interested in bioinformatics with
applications on food safety, healthcare and biomedical engineering.

Xin Xu (M’07) received the B.S. degree in electri-
cal engineering from the Department of Automatic
Control, National University of Defense Technology
(NUDT), Changsha, China, in 1996, and the Ph.D.
degree in control science and engineering from the
College of Mechatronics and Automation (CMA),
NUDT, in 2002.

He has been a Visiting Scientist for cooperation
research with the Hong Kong Polytechnic Univer-
sity, University of Alberta, Edmonton, AB, Canada,
the University of Guelph, Guelph, ON, Canada, and

the University of Strathclyde, Glasgow, U.K., respectively. He is currently a
Full Professor with the Institute of Automation, CMA. He has co-authored
four books and published more than 70 papers in international journals and
conferences. His current research interests include reinforcement learning,
learning controls, robotics, data mining, autonomic computing, and computer
security.

Dr. Xu is one of the recipients of the first class Natural Science Award
from Hunan, China, in 2009, and the Fork Ying Tong Youth Teacher Fund of
China in 2008. He is a Committee Member of the IEEE Technical Committee
on Approximate Dynamic Programming and Reinforcement Learning and the
IEEE Technical Committee on Robot Learning. He has served as a PC member
or Session Chair in numerous international conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

