
Advanced Robotics 24 (2010) 943–962
brill.nl/ar

Full paper

Triple RRTs: An Effective Method for Path Planning
in Narrow Passages

Wei Wang ∗, Xin Xu, Yan Li, Jinze Song and Hangen He

Institute of Automation, College of Mechatronics and Automation, National University of Defense
Technology, Changsha, Hunan 410073, P. R. China

Received 18 March 2009; accepted 27 August 2009

Abstract
Although Rapidly-exploring Random Trees (RRTs) have been successfully applied in path planning of ro-
bots with many degrees of freedom under non-holonomic and differential constraints, rapidly identifying
and passing through narrow passages in a robot’s configuration space remains a challenge for RRTs-based
planners. This paper presents a novel two-stage approach to address the problem of multi-d.o.f. robot path
planning in high-dimensional configuration space with narrow corridors. The first stage introduces an effi-
cient sampling algorithm called Bridge Test to find a global roadmap that identifies the critical region. The
second stage presents two varieties of RRTs, called Triple-RRTs, to search for a local connection under
the guidance of the global landmark. The two-stage strategy keeps a fine balance between global heuristics
and local connection, resulting in high performance over the previous RRTs-based path planning methods.
We have implemented the Triple-RRTs planners for both rigid and articulated robots in two- and three-
dimensional environments. Experimental results demonstrate the effectiveness of the proposed method.
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1. Introduction

During the past decades, path planning has been widely investigated in such ar-
eas as robotics, manufacturing, virtual prototyping, pharmaceutical drug design and
computer animation [1, 2]. In high-dimensional configuration space, the dramatic
decrease in efficiencies of the traditional deterministic path planning methods has
led to the development of random sampling-based algorithms, which can be divided
into two categories: multiple query and single query.
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The probabilistic roadmap method (PRM) [3] is a typical multiple-queried
method. It provides a powerful framework for path planning of multi-d.o.f. robots.
The main idea of the PRM planner is to randomly sample a robot’s configuration
space and connect the sampled points to construct a roadmap graph that captures
the connectivity of the collision-free configuration space. Owing to its simplicity
and generalization, the original PRM planner was widely extended to the prob-
lems of path planning for closed chains [4–6], and multiple [7] and non-holonomic
robots [8]. However, the uniform sampling strategy adopted by many PRM plan-
ners will reduce the efficiency dramatically when there are narrow passages in the
free space. Great efforts have been devoted to address the problem by using a non-
uniform strategy that samples more roadmaps near the boundary of the obstacles or
in narrow passages to capture the connectivity of the critical regions reliably.

The PRM and its variants are suitable for multi-queried scenarios where ran-
domly sampled roadmaps provide global landmarks for searching a feasible path.
When they are applied to a one-shot planner, the performance still remains unsat-
isfactory as more computation time is spent in expensive preprocessing. Different
approaches have been proposed for efficiently solving single-queried problems, in-
cluding Ariadne’s Clew [9], expansive space planner [10] and Rapidly-exploring
Random Trees (RRTs) [11, 12]. The RRTs planner was initially proposed for robot
path planning with non-holonomic and differential constraints. The algorithm con-
structs a tree-like data structure to incrementally explore unknown configuration
space. Since there is no preprocessing in the framework of RRTs, the efficiency
is usually high in the single-queried scenarios. In addition, the general RRTs al-
gorithm is simple to implement. Therefore, it has attracted the attentions of the
robotics community and found broad applications during the past decade. There are
many variants of the RRTs algorithm to solve different path planning problems. For
example, the RRT-Connect algorithm [13] combines a goal-oriented heuristics and
bidirectional expansion strategy to manipulation planning of an articulated virtual
human arm. Extensions of RRTs for closed articulated chains are introduced in Refs
[14–16]. Adaptations of RRTs for kinodynamic and non-holonomic planning exist
in [17, 18]. Dynamic-Domain RRTs is proposed to reduce the number of iterations
by controlling the exploring orientation [19]. On the other hand, a deterministic,
resolution complete alternative of RRTs is adopted in [20].

From the viewpoint of global path planning, RRTs planners can be treated as
powerful tools for local path planning problems when a pair of configurations is
input as a query. As there is not enough global information to accurately guide
the process of tree expansion, they may spend lots of time in identifying and pass-
ing through unknown difficult regions. Li et al. [21] extend the original RRTs to
continually explore unknown configuration space by using the data structure called
Reconfigurable Random Forest (RRF) based on the historical experiences of pre-
vious multiple queries. Although the RRF algorithm can efficiently account for
changeable environments by keeping a concise representation of pruned RRF, it
is still unsuitable for a one-shot planner as the connectivity of queried roadmaps
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cannot be verified in advance. Strandberg [22] generalizes the bidirectional RRT-
Connect method directly to multiple trees in which several invisible samples are
kept as the roots to spawn new trees. However, the algorithm cannot evaluate the
importance of each sampled roadmaps, which may grow lots of useless trees to
explore uninteresting local regions. Obviously, trying to connect the disconnected
trees to the initial and goal trees is a time-consuming task that will not provide any
benefit to find a feasible global path in a single-queried procedure.

In this paper, we present a novel two-stage approach to address the problem
of multi-d.o.f. robot path planning in high-dimensional configuration space with
narrow corridors. The first stage introduces an efficient sampling algorithm called
Bridge Test to find a global roadmap that identifies the critical region. Next, the
second stage presents two varieties of RRTs called Triple-RRTs to search for a lo-
cal connection under the guidance of the global landmark. Except for two trees
spawned from initial and goal configurations, respectively, the third tree is grown
from the identified global roadmap in the Triple-RRTs framework, providing a
global heuristics for RRTs explorations. The bidirectional connecting strategy is
performed between a pair of selected trees so that each tree has equal opportunity to
explore unknown regions and connect with the other tree. As a result, the two-stage
strategy can take advantage of both global guidance of PRM and local connection
of RRTs, resulting in high performance in finding a global collision-free path in a
single-queried planner. Preliminary experiments have produced very encouraging
results.

Section 2 reviews previous narrow passage sampling methods and then proposes
an improved Bridge Test algorithm that can efficiently identify critical regions. Sec-
tion 3 presents two varieties of Triple-RRTs methods based on the bidirectional
RRT-Connect algorithm. Section 4 reports experimental results on rigid and articu-
lated robots in two-dimensional (2-D) and 3-D environments. Finally, we draw our
conclusions and prospect the future work.

2. First Stage: Narrow Passage Sampling

2.1. Related Work

The difficulty posed by narrow passages and their importance were first noted in
early works of PRM planners, as their success highly depended on effective samples
to capture the connectivity of free configuration space. Lots of non-uniform random
sampling methods for PRM planners have been proposed to efficiently find global
roadmaps to identify critical regions.

Hsu et al. [23] describe a technique based on a dilation of the free configuration
space. The robot is allowed to slightly penetrate the obstacles and then free con-
figurations are created in the neighborhoods of these penetrating configurations.
Amato et al. [24, 25] present a number of techniques to sample along the boundary
of obstacles, instead of wasting samples on large open areas that might be free of
obstacles. Wilmarth et al. [26] propose a technique that samples near the medial
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axis between a pair of obstacles, which is as far from the boundary of obstacles as
possible. However, all of the above methods need geometric calculations that are
expensive to implement in high-dimensional configuration spaces.

Is there any effective sampling strategy that does not explicitly depend on geo-
metric shapes of the obstacles? The Gaussian sampler [27] is the first attempt to
identify narrow passages without the need for geometric calculations. Instead, the
algorithm adopts intersection tests in the robot workspace to obtain denser samples
near the obstacle regions over the whole configuration space. However, in some
cases, points near obstacle boundaries may lie far away from narrow passages due
to its simple test on a pair of samples, more samples are wasted in uninteresting re-
gions. Almost at the same time, a similar approach, called Bridge Test [28], has been
proposed to identify narrow passages by using three samples along a line segment.
Considering its high efficiency in finding globally important roadmaps to identify
narrow passages, we improve the original Bridge Test algorithm as a primitive for
our two-stage planner. In the next subsection, we will describe it in detail.

2.2. Bridge Test Algorithm

For clarity, we first give some definitions and terms. For a robot with n d.o.f., the
n-dimensional topological space describing all possible positions and orientations
of the robot is called the configuration space, denoted by C . A configuration q is
free if the rigid bodies of the robot placed at q do not collide with obstacles or with
other bodies of the robot. The set of all free configurations in C is defined to be
free space, denoted by F . The obstacle space B is defined to be the complement of
F : B = C/F . Thus, the path planning problem can be defined as follows. Given a
pair of initial and goal configurations qinit and qgoal, find a continuous collision-free
path τ : [0,1] → F , such that τ(0) = qinit and τ(1) = qgoal.

A narrow passage is a small region that impacts the connectivity of F . Uniform
distribution sampling across the entire configuration space may not work well due
to the small volumes of the narrow passages. As a result, denser sampling should
be performed in the important local regions to capture the connectivity of the lo-
cal geometries. The Bridge Test algorithm is designed to boost the sample density
in narrow passages based on collision detection. In our implementation, only one
sampled global roadmap is enough to identify a narrow passage as more samples
in the critical region will be processed automatically in the successive procedure of
Triple-RRTs exploration, which can reduce the computation time considerably.

Intuitively, a narrow passage in C has at least one restricted direction, along
which small perturbations will cause collisions between a robot and obstacle. It is
easy to sample at random a short line segment through a collision-free configuration
q such that the two endpoints of this line segment lie in B (Fig. 1). The line segment
resembles a bridge across the narrow passage so that it is called Bridge Test. If we
successfully obtain such a line segment, we say that the point q ∈ F passes the test.
Clearly building short bridges is much easier in narrow passage than in wide open
free space.
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Figure 1. Illustration of Bridge Test. Note that only the point that lies in a narrow passage can pass
Bridge Test.

In order to find a configuration that passes the Bridge Test, two endpoints must
be selected in advance that should be assigned inside the obstacles and close enough
to ensure the mid-point of the bridge lying in a narrow passage. The original Bridge
Test algorithm samples the first bridge endpoint qf from C randomly and then sam-
ples the second bridge endpoint qs in the neighboring of qf according to a specified
probability density function λq , i.e., the product of the independent Gaussians on
each axis of C . The means of each Gaussians are set to be the position of qf
in C . However, it is intractable to obtain the standard deviation σ for each inde-
pendent Gaussian distribution, as σ depends on the width of the narrow passage
that is always problem-specific. Instead, we directly use the intrinsic attribute in
the sampling strategy to assign the second bridge endpoint qs. Intuitively, the dis-
tance deviation between qf and qs in a narrow passage should not be too long.
Uniform random sampling of qs in C is not practical as qs may lie far away from qf.
Therefore, we restrict the sampling region of qs near qf by the strategy described as
follows. Suppose the lower boundary of the planning region in C is qmin. A candi-
date configuration point qc is sampled at random without checking for collision and
then the value of (qc − qmin) is multiplied by a small scale 1/l to obtain the offset
dq = (qc − qmin)/ l. qs is then evaluated by:

qs = qf + (−1)n · dq, (1)

where n is a random integer, implying that qs may lie either in front of or behind qf.
The improved Bridge Test (BRIDGE_TEST) algorithm is described in Algo-

rithm 1. The algorithm either returns a mid-point of the bridge qm that passes Bridge
Test or returns failure.

2.3. Influence of the Parameter l

Compared to randomly sample configurations in C based on a multivariable
Gaussian distribution, BRIDGE_TEST needs only one parameter l to scale the
candidate configuration qc into a bounded sampled region. We then analyze the in-
fluence of the parameter l so as to select the appropriate value for the setup of the
experiments.
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Algorithm 1
BRIDGE_TEST()

Step 1: The first bridge endpoint qf is uniformly sampled at random in C.

Step 2: If qf is not collision-free (implying that qf lies in obstacle space B), the candidate configura-
tion qc is uniformly sampled at random in C as well. Otherwise, go back to Step 1.

Step 3: The second bridge endpoint qs is calculated by: qs = qf + (−1)n · (qc − qmin)/ l.

Step 4: If qs is not collision-free (implying that qs lies in B), the mid-point of the bridge qm is calcu-
lated by: qm = (qf + qs)/2. Otherwise, go back to Step 1.

Step 5: If qm is both collision-free and lies in C (implying that qm belongs to F ), we say that qm
successfully passes Bridge Test. The algorithm returns qm for the following procedure of
Triple-RRTs planner and then terminates.

Step 6: Repeat Steps 1–5 until the maximum permitted number of iterations has been reached.

Suppose that the dimension of the configuration space is n. Defining the upper
and lower boundaries of planning region in C to be qmax = (u1, u2, . . . , un)

T and
qmin = (r1, r2, . . . , rn)

T, respectively. For each configuration q = (q1, q2, . . . , qn)
T ∈

C , the inequality formula ri � qi � ui (1 � i � n) must be held all the time.
The first and second bridge endpoints are defined as qf = (qf,1, qf,2, . . . ,

qf,n)
T ∈ C , qs = (qs,1, qs,2, . . . , qs,n)

T ∈ C , respectively. It is easy to derive that
each element of qs is bounded by:

qs,i ∈
[
qf,i − ui − ri

l
, qf,i + ui − ri

l

]
, i = 1, . . . , n. (2)

Thus the maximum permitted width of the bridge Wmax on the ith axis is evaluated
by:

Wmax,i = 2(ui − ri)/ l. (3)

If the minimum distance between two nearby obstacles is lager than Wmax in an
arbitrary direction, we say that no narrow passage exists in this corridor.

The illustrations of the maximum permitted region for both original (left two fig-
ures) and improved (right two figures) Bridge Test algorithms are shown in Fig. 2.
The original Bridge Test algorithm introduces a Gaussian probability density func-
tion with standard deviation σ to restrict the sampling volume. The closer to the first
bridge endpoint qf, the higher probability the second bridge endpoint qs is chosen.
Thus, a shorter bridge is preferable in the original algorithm, which might cost a lot
of computation time to search over the large configuration space. In our improved
algorithm, uniform random sampling is performed to find qs in a restricted region,
where a narrow passage of which the length is smaller than the maximum permit-
ted value could be identified with a predefined uniform probability distribution.
Besides, more computation time is saved in our method since only one sampled
landmark is enough to identify one narrow passage, and the neighboring difficult
region will be explored by the successive RRTs expansion.
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Figure 2. Sampling probability density of point qs in the Bridge Test algorithm. The left two figures
show Gaussian density with different σ and the right two figures show uniform density with different
sizes (white = high density, black = low density).

Figure 3. Maximum value of l, where the maximum permitted width of a narrow passage is equal to
the width of the rigid body.

It is observed from Fig. 2 that a large value of l should be precluded as more
computation time is required to identify a small volume of the permitted sampling
region. In an extreme case, when Wmax is equal to the maximum width of the rigid
segment of the robot, there is no need to find a bridge in a region smaller than the
volume of the robot (Fig. 3). Although a small value of l corresponds to a large
volume of the permitted sampling region, time will be wasted in finding a long
bridge across a wide area. In the other extreme case, when l is set to 2, the permitted
sampling region of Bridge Test is equal to the whole planning region, resulting in a
very long bridge across this extremely wide area, which would be of no benefit for
the planning procedure. Generally speaking, l should not be too small or too large
so that a narrow passage can be well defined. Clearly the best setting of l is problem-
dependent, which makes it difficult to be chosen in advance. We empirically set the
range of l to [10, 30] based on a series of independent experiments. A promising
approach is to adjust l for each specific problem adaptively through online learning,
so that the best value of l can be identified automatically in an adaptive way.

3. Second Stage: Triple-RRTs Path Planner

3.1. RRT-Connect Path Planner

RRTs, introduced by LaValle in 1998 [11], has been recognized as a very useful tool
for designing single-query path planners. Starting at a given initial configuration,
the classic RRTs incrementally grows a tree to explore the unknown configuration
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Algorithm 2
RRT-Connect(qinit, qgoal)

Step 1: Initialize the first tree structure Ta rooted at qinit. Initialize the second tree structure Tb rooted
at qgoal.

Step 2: Randomly sample a configuration qrand in C.

Step 3: Ta extends one step to qrand, generating a new configuration qnew. If qnew is collision-free, it
is added as a child node to Ta.

Step 4: Tb extends to qnew continuously until it either collides with obstacles or reaches qnew. Adding
the new expanded configuration as a child node to Tb.

Step 5: If Tb reaches qnew, Ta and Tb are connected, the algorithm terminates after a solution path is
returned.

Step 6: Swap Ta and Tb, Repeat Steps 2–5 until the maximum permitted number of iterations has
been reached.

space. The probability that a point is selected for extension is proportional to the
area of its Voronoi region, so that RRTs tends to rapidly orient to the unexplored
regions of F .

Classic RRTs only keeps a single tree from the initial configuration. The algo-
rithm often attempts to extend towards an unexplored region instead of orienting
to the goal configuration. Therefore, the algorithm may spend lots of computation
time in sampling large open areas of the configuration space before finding a solu-
tion path. Two years later, an important improvement called RRT-Connect [13] was
proposed to grow two trees from initial and goal configurations, respectively. Both
a bidirectional expansion and a goal-oriented heuristic strategy are adopted to make
two trees grow rapidly toward each other, resulting in a substantial improvement of
performance.

The RRT-Connect algorithm is shown in Algorithm 2. Two trees, denoted by Ta
and Tb, are maintained at all times until they become connected and a solution path
is returned. In each iteration, a configuration qrand is randomly sampled to which the
first tree extends for one step, generating a new node qnew, and then the second tree
attempts to extend toward qnew as far as possible. Balanced extension is achieved by
swapping two trees. As a result, the RRT-Connect algorithm can keep a fine balance
between exploration and connection.

3.2. Triple-RRTs Path Planner

Although the RRT-Connect planner performs well in many applications, it still
suffers from the drawback of uniform sampling strategy when there are narrow
passages away from both the initial and goal configurations, which is illustrated by
the so-called bug-trap example [1] in Fig. 4. The task is to move a robot with 2
translational d.o.f. from the left bug-trap obstacle to the right side. For both trees,
they tend to explore wide open areas formed by the curved obstacles before find-
ing the tiny opening, leaving the problem intractable (left-hand panel in Fig. 4).
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Figure 4. Bug-trap problem, where the RRT-Connect planner suffers from narrow passages.

Clearly, a prior understanding about the environment information will increase the
possibility of passing through the tiny opening. Based on such consideration, we
present two varieties of RRTs called Triple-RRTs in which the intermediate tree is
grown from the global roadmap found by the first stage of the Bridge Test algorithm
mentioned above. Both of the bridge endpoints are marked by the square block in
Fig. 4. It is observed that fewer nodes have been extended before a valid solution
path is found in the Triple-RRTs planner as the position of the opening is successful
identified by our improved Bridge Test algorithm. The detailed description of the
Triple-RRTs planners is discussed below.

Recall that we have obtained a sampled roadmap qm through the improved
Bridge Test algorithm described in Section 2. In order to apply global heuristics
to RRTs exploration, the third intermediate tree Tc is grown from the global land-
mark qm except the previous two trees Ta and Tb. That is why we call it Triple-RRTs
planner. Since the root of Tc lies in a narrow passage, it is expected to sample more
configurations near the critical region so as to guide the tree through the identified
narrow passage.

In the triple-trees planning framework, it is natural to ask which pair of trees
should be selected to explore and connect. The simplest strategy is to connect qinit
and qm based on RRT-Connect algorithm to find the half path Path1, while connect
qm and qgoal to find the other half path Path2. The full path Path is synthesized by
joining Path1 and Path2 together. The strategy is called Simple-Triple-RRTs and
shown in detail in Algorithm 3.

Note that the Simple-Triple-RRTs planner combines the RRT-Connect algo-
rithm as a bidirectional expansion strategy to connect a pair of candidate trees. If
BRIDGE_TEST() cannot find such a mid-point qm to identify the narrow passage,
the algorithm will be degraded to the standard RRT-Connect form. As a result, the
Simple-Triple-RRTs planner generally performs better than the RRT-Connect algo-
rithm.
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Algorithm 3
Simple-Triple-RRTs(qinit, qgoal)

Step 1: Call BRIDGE_TEST() to find the global roadmap qm.

Step 2: Call RRT-Connect(qinit, qm) to generate one half path Path1.

Step 3: Call RRT-Connect(qm, qgoal) to generate the other half path Path2.

Step 4: Joint Path1 and Path2 together to synthesize the full path Path.

Figure 5. Narrow dead-end region.

However, the Simple-Triple-RRTs planner may be stuck in a so-called narrow
dead-end passage with one end open and the other end closed, which is depicted
in Fig. 5. As the Bridge Test algorithm is based on a test of local geometry of
the configuration space, we cannot tell the difference between a narrow passage
and a narrow dead-end. Although the drawback could be eliminated by using an
orthogonal test in which an additional bridge is introduced to identify the opening
of the narrow region, more computation time is required as it checks for collision
5 times (four endpoints plus one mid-point), while the original Bridge Test takes
only 3 times in one loop. As a result, we attempt to eliminate the false-positive
phenomena by improving the poor extending strategy of the Simple-Triple-RRTs
planner.

Since the Simple-Triple-RRTs strategy requires the final path to go through the
intermediate tree Tc, the algorithm will return failure if any of the half paths can-
not be generated successfully. Besides, if open wide corridors exist between qinit
and qgoal, the performance of the algorithm will decrease as more time will be spent
in exploring the identified difficult region, rather than choosing the path across the
wide corridor which could be more preferable if it is connectable. The reasonable
strategy is to equally choose a pair of candidate trees for exploration and connec-
tion at each time. Whenever a feasible path containing qinit and qgoal is found, the
algorithm will terminate, regardless whether it passes through qm or not. There-
fore we design a balanced search algorithm called Balanced-Triple-RRTs, which is
described in Algorithm 4.
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Algorithm 4
Balanced-Triple-RRTs(qinit, qgoal)

Step 1: Initialize the first tree structure Ta rooted at qinit. Initialize the second tree structure Tb rooted
at qgoal. Clear the list Path1, Path2 and Path.

Step 2: Call BRIDGE_TEST() to find the global roadmap qm. Initialize the third tree structure Tc
rooted at qm.

Step 3: Call Connect(Ta, Tb) to extend one step from Ta to Tb. If Ta and Tb are connected, the algo-
rithm terminates after returning a solution path.

Step 4: If Path1 does not exist, Call Connect(Ta, Tc) to extend one step from Ta to Tc. If Ta and Tc
are connected, record the half path Path1.

Step 5: If Path2 does not exist, Call Connect(Tc, Tb) to extend one step from Tc to Tb. If Tc and Tb
are connected, record the half path Path2.

Step 6: If both Path1 and Path2 exist, joint Path1 and Path2 together to synthesize the full path Path.
The algorithm terminates after returning a solution path Path.

Step 7: Swap Ta and Tb, Repeat Steps 3–6 until the maximum permitted number of iterations has
been reached.

Figure 6. The illustration of the procedure of Balanced-Triple-RRTs extension.

Balanced-Triple-RRTs keeps three trees Ta, Tb, and Tc rooted at qinit, qgoal and
the mid-point of the bridge qm, respectively. Each tree has equal probability of ex-
tension by the alternate strategy. The algorithm is expected to return any valid path
as long as the trees containing qinit and qgoal intersect at a particular point. The
strategy is especially suitable for the situation that both narrow and wide open cor-
ridors coexist. The illustration of the Balanced-Triple-RRTs algorithm is shown in
Fig. 6. It is observed that a fine balance of tree expansion is achieved to return either
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‘path 1’, when the intermediate tree is easy to pass, or ‘path 2’, when it is difficult
to connect the intermediate tree to both the initial and goal tree. In conclusion, the
algorithm takes advantage of the Bridge Test algorithm as much as possible, while
eliminating the possible drawbacks of the Bridge Test algorithm during the proce-
dure of RRTs extensions.

4. Experimental Results

We implemented both the Simple- and Balanced-Triple-RRTs planners based on
the Motion Strategy Library (http://msl.cs.uiuc.edu/msl/) developed by Professor
Steven M. LaValle from the University of Illinois at Urbana Champaign. We
have compared the performances of the three RRTs algorithms described in Al-
gorithms 2–4. For each of the experiments, we show the running times (Times), the
total number of nodes in the trees (Nodes) and the total number of collision detec-
tion calls (CD Calls) averaged over 30 runs. As an important preprocessing stage,
the performance of the Bridge Test algorithm is listed separately. According to the
analysis mentioned in Section 2.3, the parameter l in to Bridge Test is set to be 20 a
priori. All of the experiments are performed on a 3.0 GHz Pentium PC with 1.0 GB
memory.

The first experiment is for a rigid segment robot with 2 translational d.o.f. and
1 rotational d.o.f. The robot has to move from the large open area on the left side,
through a narrow zigzag corridor, to the right side. The tree structure, as well as
the solution path, is shown in Fig. 7. The performance comparison of the three
RRTs algorithms is shown in Table 1. As expected, the Triple-RRTs planners can
effectively identify and pass through the narrow passage in about 2–3 s. They give
about 5 times improvement in the running time over the RRT-Connect planner in
this experiment. Note that the illustrations of the structures of expanded trees are
projected from 3-D configuration space to the 2-D robot work space.

The second experiment, shown in Fig. 8, is the bug-trap environment for the same
robot. The robot has to get through two tiny openings to reach the goal position.
It is observed from Table 1 that the Triple-RRTs planners improve running time

Figure 7. A 2-D example. A 3-d.o.f. robot has to move through the zigzag corridor from the left
side to the right side. The first three figures show tree structures generated by RRT-Connect, Sim-
ple-Triple-RRTs and Balanced-Triple-RRTs algorithms, respectively.

http://msl.cs.uiuc.edu/msl/
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Table 1.
Performance comparisons of the RRT-Connect and Triple-RRTs algorithms

Experiment Planners Time (s) Nodes CD calls

1 RRT-Connect 14.36 782 14602
Simple-Triple-RRTs Bridge test 0.039 — 318

Planning 2.53 393 6248
Balanced-Triple-RRTs Bridge test 0.015 — 264

Planning 3.22 469 8268
2 RRT-Connect 105.56 3993 127290

Simple-Triple-RRTs Bridge test 0.031 — 471
Planning 0.80 220 3837

Balanced-Triple-RRTs Bridge test 0.016 — 384
Planning 0.60 180 3209

3 RRT-Connect 116.95 4867 255717
Simple-Triple-RRTs Bridge test 0.016 — 51

Planning 2.11 319 21624
Balanced-Triple-RRTs Bridge test 0.012 — 46

Planning 1.67 190 12574
4 RRT-Connect 62.26 593 13321

Simple-Triple-RRTs Bridge test 18.69 — 5763
Planning 29.84 398 5622

Balanced-Triple-RRTs Bridge test 20.38 — 6146
Planning 32.36 452 6088

Figure 8. Bug-trap example. A 3-d.o.f. robot has to move from the left bug-trap side to the right
side. The two figures on the left show tree structures generated by Simple-Triple-RRTs and Bal-
anced-Triple-RRTs, respectively.

more than 120 times over the RRT-Connect planner. Interestingly, the performance
of Balanced-Triple-RRTs planner is slightly better than that of the Simple-Triple-
RRTs planner. The reason is partly because balanced explorations among three trees
rather than two trees may be of benefit to find underlying connectivity in high-
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Figure 9. Performance comparisons of both Bridge Test and the Simple-Triple-RRTs planner for
different value of l. The bottom two figures show two types of the bridge points in worst cases when
l is set to 5 and 10, respectively.

dimensional configuration space. The illustrations of the structures of expanded
trees are also projected from 3-D configuration space to the 2-D robot work space.

In the bug-trap experiment, the size of the environment is 100×100, and the size
of the robot is 4 × 2. According to equation (3), the valid range of l is calculated to
be [2, 100]. We select different values of l from 5 to 30, and test the performances of
both Bridge Test and the Simple-Triple-RRTs planner. The result is shown in Fig. 9.
When the value of l is small, an invalid collision-free endpoint will be sampled with
a high probability in a wide permitted region of uniform random sampling, so that
the performance of Bridge Test is low. The performance of Simple-Triple-RRTs
is greatly affected by the invalid roadmap found in some difficult regions (bottom
two panels of Fig. 9), which will not help increase the connectivity of the global C
space. The performance is also affected slightly by a large value of l. For the Bridge
Test algorithm, it requires more computation time to identify either a short bridge
or a long bridge in C space. For the Simple-Triple-RRTs planner, the performance
does not decrease so much once a valid global roadmap that locates in the opening
region has been returned successfully. It is observed that the appropriate range for l

in this experiment is [15, 22], in accordance with our expectation.
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Figure 10. A 3-D example. An L-shaped 6-d.o.f. robot has to move through a wall with a small hole
in the center. The left figure shows the robot initial and goal positions, Bridge Test points, as well as
the tree structure generated by the Simple-Triple-RRTs planner. The right figure shows one solution
path found by the Balanced-Triple-RRTs planner.

Figure 11. Manipulation planning example. The virtual human has to hold a box to move through a
manipulation window. The figure shows the animation snapshots in 1, 87, 132, 158 and 235 frames,
respectively.

The third experiment, shown in Fig. 10, is for an L-shaped 6-d.o.f. robot nav-
igating in the 3-D environment. Here, the robot, consisting of two perpendicular
blocks, has to pass through a broad wall with a small hole in the center. Both of the
blocks have the dimension 30×4×4, while the hole has the dimension 20×20×4.
The robot’s movement is very restricted when it is inside the small hole. Again we
compare the three RRTs algorithms and the results are shown in Table 1. There
is an improvement of two orders of magnitude in the running time for this ex-
periment, the same as the bug-trap experiment. Note that the performance of the
Balanced-Triple-RRTs planner is still slightly better than that of the Simple-Triple-
RRTs planner, implying that the Balanced-Triple-RRTs planner may generate more
samples in the narrow passage so as to pass through the narrow passage more effi-
ciently than the Simple-Triple-RRTs planner.

The final experiment is a manipulation planning problem that is shown in Fig. 11.
A virtual human has to hold a box to move through a manipulation window. Each
articulated arm of the virtual human contains 7 d.o.f., and the manipulated box has 6
d.o.f. The total dimension of the configuration space in this problem adds up to 20,
much higher than all of the above experiments. Furthermore, there is a closed-chain
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constraint between both arms and the manipulated object. The inverse kinematics
toolkit IKAN [29] is applied to account for the closed kinematic constraints. The
joint angles of both arms are calculated based on the spatial posture of the manip-
ulated object. The result is shown in Table 1. It is observed that the performance
improvement is not so great as in the above experiments, because the configura-
tion space is highly constrained by kinematics and the joint rotation limits. It is
observed from Table 1 that much computation time is spent in Bridge Test in such a
high-dimensional configuration space. The intention of showing this example is to
demonstrate that the Triple-RRTs planner can also be applied to solve multi-d.o.f.
robot motion planning problems with both open and closed chains, which is of great
importance to the robotics and computer graphics community.

5. Conclusions

We have presented two varieties of Triple-RRTs planners based on the improved
Bridge Test algorithm to address the multi-d.o.f. robot path planning problem in
narrow passages. The proposed Triple-RRTs planners take advantage of the global
heuristics of PRM and local connection of the RRTs algorithm. Our algorithm pro-
ceeds in two stages. The first stage improves the Bridge Test algorithm to find
a global landmark that identifies the critical region efficiently. The second stage
grows triple RRTs trees from the queried configurations and the global landmark.
The bidirectional RRT-Connect algorithm is applied to search for a local connection
among these trees, guiding the path through a narrow passage rapidly. Compared
to previous single-query path planning methods, the two-stage strategy is more ef-
fective in finding a global feasible path as a fine balance is kept between global
guidance and local connection. The approach is simple, general and experiments
demonstrate that it achieves high performance for a wide class of multi-d.o.f. robot
path planning problems.

Even though the proposed method has numerous advantages in environments
with narrow passages, several unresolved issues remain for further study.

A major problem is the optimum value of the parameter l. Although we give an
approximate range for l through a large number of independent experiments, the
optimal value is certainly problem-specific, leaving it intractable to be determined
a priori. The reasonable value is expected to be chosen based on on-line reinforce-
ment learning that could incrementally understand the local geometry of narrow
passages.

In addition, the method can be generalized to multi-RRTs planner. Since the
RRT-Connect algorithm is considered as an effective local path planner given a
pair of queried configurations, a global path planning algorithm depending on the
multi-RRTs framework can be built based on a variety of sampled roadmaps in
critical regions, which would clearly improve the generality of the planner in more
complex environments. However, there are two main open problems:



W. Wang et al. / Advanced Robotics 24 (2010) 943–962 959

(i) How many sampled configurations are enough to identify all of the narrow pas-
sages? How to efficiently evaluate the validity of sampled configuration found
by the Bridge Test? The more sampled configurations, the greater the under-
standing about the configuration space. However, poor sampled roadmaps will
reduce the performance of the planner dramatically. We intend to apply the
clustering technique to generate a clustering center of the sampled roadmaps
to identify the critical regions. As the Bridge Test algorithm checks collisions
3 times in one loop, it is not reasonable to call the Bridge Test frequently.
The optimal number of sampled configurations should be calculated for gen-
eral path planning problems.

(ii) How to efficiently merge a pair of trees? If two trees are difficult to merge, does
it imply that one tree lies in the disconnected region so as to be deleted from the
multi-RRTs framework, or on the contrary, both of the trees locate in narrow
passages that should be connected frequently in the successive iterations? Thus,
a well-posed merging strategy should be designed for general single-queried
path planning problems.

Both of the above issues remain areas for further study.
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