
Applied Soft Computing 10 (2010) 859–867
Sequential anomaly detection based on temporal-difference learning: Principles,
models and case studies§

Xin Xu

Institute of Automation, College of Mechatronics and Automation, National University of Defense Technology, Deya Road, Changsha 410073, PR China

A R T I C L E I N F O

Article history:

Received 3 January 2008

Received in revised form 11 May 2009

Accepted 3 October 2009

Available online 27 November 2009

Keywords:

Anomaly detection

Temporal-difference

Markov reward processes

Learning prediction

Computer security

Reinforcement learning

A B S T R A C T

Anomaly detection is an important problem that has been popularly researched within diverse research

areas and application domains. One of the open problems in anomaly detection is the modeling and

prediction of complex sequential data, which consist of a series of temporally related behavior patterns.

In this paper, a novel sequential anomaly detection method based on temporal-difference (TD) learning

is proposed, where the anomaly detection problem of multi-stage cyber attacks is considered as an

application case. A Markov reward process model is presented for the anomaly detection and alarming

process of sequential data and it is verified that when the reward function is properly defined, the

anomaly probabilities of sequential behaviors are equivalent to the value functions of the Markov reward

process. Therefore, TD learning algorithms in the reinforcement learning literature can be used to

efficiently construct anomaly detection models of complex sequential behaviors by estimating the value

functions of the Markov reward process. Compared with other machine learning methods for anomaly

detection, the proposed approach has the advantage of simplified labeling process using delayed

evaluative signals and the prediction accuracy can be improved even if labeled training data are limited.

Based on the experimental results on intrusion detection of host computers using system call data, it was

shown that the proposed anomaly detection method can achieve higher or at least comparable detection

accuracies than other approaches including SVMs, and HMMs.
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1. Introduction

As a typical pattern recognition task, anomaly detection is to
detect non-conforming or abnormal patterns from a given class of
normal behaviors. These non-conforming patterns are often
referred to as anomalies, outliers, exceptions, or surprises in
different applications. Anomaly detection is widely used in a
variety of domains, such as intrusion detection, fraud detection,
fault detection, system health monitoring, and event detection in
sensor networks. Although anomaly detection in data has been
studied in the statistics community as early as the 19th century,
there are still several open problems to be solved. As discussed in
[1], one of the main challenges for anomaly detection techniques is
that defining a normal region which encompasses every possible
normal behavior is very difficult. The other challenge is that
availability of labeled data for training/validation of models used
by anomaly detection techniques is usually a major issue. In
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addition, the data usually contains noise which tends to be similar
to the actual anomalies and hence is difficult to distinguish and
remove. In recent years, aiming at the above challenges, a variety of
anomaly detection techniques have been developed in the soft
computing and machine learning communities. For a comprehen-
sive survey on anomaly detection techniques based on machine
learning, readers may refer to [1].

In general, existing soft computing approaches to anomaly
detection can be grouped into three categories, i.e., supervised or
classification-based, semi-supervised, and unsupervised anomaly
detection methods. Supervised anomaly detection techniques
learn a classifier using labeled instances belonging to normal or
anomaly class, and then assign a normal or anomalous label to a
test instance. Typical approach in such cases is to build a predictive
model for normal vs. anomaly classes [2–4,28]. Semi-supervised
anomaly detection techniques construct a model representing
normal behavior from a given normal training data set, and then
test the likelihood of a test instance to be generated by the learnt
model. It is assumed that the training data have labeled instances
for only the normal class. Since they do not require labels for the
anomaly class, they are more widely applicable than supervised
techniques [5,16]. Unsupervised anomaly detection techniques
detect anomalies in an unlabeled test data set under the
assumption that majority of the instances in the data set are
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normal [10,11]. The techniques in this category make the implicit
assumption that normal instances are far more frequent than
anomalies in the test data. If this assumption is not true then such
techniques suffer from high false alarm rate.

Although anomaly detection techniques have been widely
studied and applied in a variety of areas, there are still many
challenges for detecting anomalies in sequential data which is very
common in a wide range of domains where a natural ordering is
imposed on data instances by either time or position. In anomaly
detection literature, two types of data sequences have been
popularly studied, i.e., symbolic and continuous sequences. In this
paper, we will mainly focus on symbolic data sequences but the
methodology developed may also be extended to continuous data
sequences or time series. Due to the temporally related nature of
sequential data, detecting anomalous subsequences is more
challenging than anomaly detection in static patterns. In this paper,
a novel sequential anomaly detection method based on temporal-
difference (TD) learning [19], which can be called TD_SAD, is
presented, where intrusion detection of multi-stage computer
attacks is considered as a special application case. For anomaly
detection of multi-stage cyber attacks, Markovian modeling of
sequences has been a popular approach in this category. However, in
our approach, a new Markov reward model is established for
sequential data, which is different from previous works in that
reward functions are defined as a feedback signal to indicate
whether a long sequence of observation patterns is normal or
abnormal. Furthermore, it is analyzed in theory that the sequential
anomaly detection task can be implemented by predicting the value
functions of the Markov reward process. In the proposed TD_SAD
approach, by incorporating reward signals for every observation
pattern in data sequences, the anomaly probabilities of sequential
behaviors are equivalent to the value functions of the Markov
reward process. Therefore, the TD learning and prediction algo-
rithms developed from the reinforcement learning [15] literature
can be employed to detect multi-stage cyber attacks. According to
the authors’ knowledge, this is the first attempt to apply TD learning
and prediction in sequential anomaly detection, which is different
from previous supervised learning or statistical methods.

As we will analyzed in the following sections, the anomaly
detection method proposed in this paper provides a new frame-
work for detecting anomalies in multi-stage cyber attacks and can
also be applied to other anomaly detection tasks in sequential data.
The main contributions of this paper include the following two
aspects. The first aspect of innovation is that reward functions are
designed in Markovian modeling of sequential data so that the
anomaly detection problem can be formulated as an equivalent
value function prediction task. In previous works, the Markov
models only focused on statistical models of state transitions and
no reward functions were considered, which range from Finite
State Automatons (FSAs) to Hidden Markov Models (HMMs)
without reward functions. FSAs have been used to detect
anomalies in network protocol data and operating system call
intrusion detection [5], where anomalies are detected when a
given sequence of events does not result in reaching one of the final
states. In [12], HMM-based techniques were proposed to detect
anomalous program traces in operating system call data. In our
approach, the reward functions can be viewed as indicative signals
for learning and the teacher signals in supervised learning are
special cases of reward functions. So, the TD_SAD approach
proposed in this paper provides a more flexible and efficient
framework than FSA and HMMs and more prior information can be
used to improve the performance of sequential anomaly detection.
The second aspect of contributions is that temporal-difference
learning was applied in anomaly detection of multi-stage cyber
attacks and very promising results have been obtained. Until now,
there have been few research works on applying TD learning in
anomaly detection of complex sequential data. Thus, the proposed
anomaly detection method based on Markov reward process and
TD learning not only provides a new direction for research on
intrusion detection using reinforcement learning but also has lots
of potential extensions to anomaly detection tasks in other areas.
The performance of the proposed anomaly detection method using
TD learning was evaluated on system call data of host-based
intrusion detection, from the MIT Lincoln Lab. and the University of
New Mexico (UNM) [17]. The experimental results illustrate that
the proposed method can achieve higher or at least comparable
detection accuracies than previous approaches.

The paper is organized as follows. In Section 2, the research
background of anomaly detection in computer security and related
works are introduced. In Section 3, the anomaly detection problem
in sequential data is formulated and analyzed by using intrusion
detection of multi-stage cyber attacks as an application example.
In Section 4, the anomaly detection method based on Markov
reward models and TD learning is presented. It is proved that by
appropriately selecting the reward functions of the Markov reward
model, there is equivalence between the estimation of anomaly
probabilities and the learning prediction of value functions. In
Section 5, experimental results on the system call data from the
MIT Lincoln Lab. and the UNM are described to illustrate the
effectiveness of the proposed method. And in Section 6, conclu-
sions and discussions are provided.

2. Background and related works

Since the detection problem of multi-stage cyber attacks will be
used as an application case for the proposed anomaly detection
method, some research background and related works will be
introduced in the following. The purpose of intrusion detection [6]
is to find cyber attacks or non-permitted deviations of the
characteristic properties in a computer system or monitored
networks. Earlier intrusion detection techniques commonly made
use of extracted signatures of known attacks and made decisions
by comparing observation data with the signatures. This kind of
detection strategy is usually called misuse detection. Nevertheless,
it is almost impossible for misuse detection systems to find new
attacks with unknown or deformed signatures. To overcome the
shortcomings of misuse detection, anomaly detection techniques
in computer security have attracted lots of research interests in the
literature [3,4]. Anomaly detection is different from misuse
detection techniques in that little prior knowledge on precise
signatures of computer attacks is needed. So, one advantage of
anomaly detection is the ability to detect novel attacks. However,
since conventional anomaly detection techniques have to deal
with a complete set of normal behaviors, which usually have large
uncertainties and observation noises, it is very difficult to for
anomaly detection systems to have high detection rates and low
false alarm rates simultaneously. In addition, in order to use
training data from recorded attack behaviors to improve perfor-
mance, it is also desirable to develop systematic methods to
incorporate attack behaviors in the framework of anomaly
detection, i.e., to construct hybrid anomaly detection models
using both normal behavior data and attack data.

Aiming at the above problems, soft computing methods have
been widely studied for anomaly detection in computer security
applications in the past decade [7–11]. In [7,8], several efforts have
been devoted to designing anomaly detection algorithms using
supervised learning algorithms, such as neural networks, etc. Some
recent works have been focused on using supervised learning
methods to construct hybrid anomaly detection models, i.e., models
that trained both on normal data and attack data, such as the multi-
class classifier approach based on support vector machines (SVMs)
[10]. Another approach to anomaly detection is to use unsupervised



Fig. 1. Basic structure of an anomaly detection system.
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learning methods [9]. Unlike supervised learning methods, whose
models are built by careful labeling of observation data, unsuper-
vised anomaly detection tries to detect anomalous behaviors with
little a priori knowledge about the training data. However, as studied
in [7], the performance of pure unsupervised anomaly detection
approaches is usually unsatisfactory, e.g., it was demonstrated in [7]
that supervised learning methods significantly outperformed the
unsupervised ones if the test data only contain known attacks.

Despite of the great potentials of applying machine learning
methods to improve the performance of anomaly detection, previous
approaches still do not have satisfactory results in terms of detection
accuracy and low false alarm rates, especially for complex multi-
stage attacks, which consist of long sequences of observation
features. Essentially, there are two important challenges need to be
considered for anomaly detection of multi-stage cyber attacks. One
challenge is the training data collection and labeling problem, which
is crucial to the successful applications of supervised learning
methods. Since the observation data in computer security are very
huge and training data may be a mixture of normal usage and attack
behaviors, it will be very expensive to get precisely labeled data. And
it will be necessary to develop new hybrid anomaly detection models
that can realize model training both on normal and abnormal data.
The other challenge of applying machine learning methods in
anomaly detection is to model dynamic sequential behaviors for
complex multi-stage attacks, since many multi-stage attacks consist
of sequences of temporally related observation features and it will be
more difficult to give precise labels to such kind of attacks. Therefore,
dynamic behavior modeling approaches [12] for anomaly detection
become very important to improve the performance of intrusion
detection in complex environments.

To simplify the process of data labeling and realize efficient
modeling of sequential behavior patterns, semi-supervised learn-
ing methods have received increasing attention in recent years
[14]. Unlike supervised and unsupervised learning algorithms,
semi-supervised learning can make use of unlabeled data to solve
complex sequential prediction and decision problems. In [14], a
semi-supervised approach to anomaly detection was proposed,
where a partially observable Markov decision process (POMDP)
model was given as the decision model of intrusion detection
problems. Nevertheless, the POMDP model is computationally
expensive and it is very difficult to solve real-world POMDP
problems with large state spaces. In [14], it was suggested that
simpler models and cost functions may be used.

In order to overcome the weakness of previous anomaly
detection approaches, especially to solve the data labeling and
sequential behavior detection problem, in this paper, a novel
anomaly detection method based on TD learning is proposed. After
establishing a new Markov reward model for sequential anomaly
detection, it is proved that with appropriately defined reward
functions, the estimation of anomaly probabilities for sequential
behaviors can be equivalently solved by learning the value
functions of the Markov reward process. Therefore, TD learning
algorithms [23,26] can be efficiently used for model construction
and prediction in anomaly detection systems. The Markov reward
model in this paper can be viewed as a practical extension and
simplification of the POMDP model in [14]. More importantly, the
main advantage of the proposed method is that it needs very little a

priori knowledge on the precise labeling of training samples and
only evaluative labeling on complete data sequences is required,
which is more practical in real-world applications for detecting
multi-stage cyber attacks.

3. The anomaly detection problem in sequential data

In the following, intrusion detection of multi-stage cyber
attacks will be employed as an application case to formulate and
analyze the sequential anomaly detection problem. Fig. 1 shows
the basic structure of an intrusion detection system, which
includes four main procedures, i.e., training data labeling, feature
extraction, detection model training and online detection. In the
data collection and labeling procedure, training data are selected
and labeled from the observation data, which either come from
host computers or network traffic. Then, a feature extraction
process is performed to transform the data into representations
that are suitable for model training. After that, detection models
can be constructed and optimized by various machine learning
algorithms. At last, online detection is performed and alarms can
be sent out based on the outputs of the detection model.Among the
above four procedures, training data labeling is one of the most
important and difficult tasks since it is hard to extract signatures
precisely even for known attacks and there are still increasing
amounts of unknown multi-stage attacks with complex sequential
signatures. Until now, although there have been many research
works on intrusion detection based on machine learning methods,
little attention has been put on the labeling problem. In most of the
previous anomaly detection methods based on supervised learning
algorithms, every single sample in the training data was either
labeled as normal or abnormal. However, the distinctions between
normal and abnormal behaviors are usually very vague and
inappropriate labeling may limit or worsen the detection
performance of supervised learning methods. This difficulty
becomes more severe when the observed data consist of
temporally related sequential patterns, i.e., the behaviors are
described as temporal traces of single observation features. For
example, in host-based intrusion detection, most user-to-root
attacks are multi-stage attacks and they are consisted of sequences
of system calls or shell commands [12]. The execution trajectories
of different processes form different traces of system calls. Each
trace is defined as the list of system calls issued by a single process
from the beginning of its execution to the end. For intrusion
detection using other types of observation data such as network
connections, similar sequential behaviors can also be observed for
complex multi-stage attacks. For example, Fig. 2 shows a
sequential state transition model for a simplified IP protocol [5].

For intrusion detection based on various observation data, the
observation elements are raw data from the sensors of an intrusion
detection system (IDS), which can be formally defined as follows:

Definition 1 (Basic observation element).
A basic observation element in an IDS is an observation feature ot

that is obtained from a corresponding sensor at a given time.

From Definition 1, a basic observation element ot can be either a
system call in host-based IDSs or a connection feature vector in
network-based IDSs. Let O denote the set of all possible symbols of
observation elements ot. A complete observation sequence for
anomaly detection can be formally defined as follows.

Definition 2 (Complete observation sequence).
A complete observation sequence for intrusion detection is a time
series of basic observation elements {o1, o2, . . ., oT} with oi 2 O,
which can be accurately determined either as normal or abnormal.



Fig. 2. A simplified IP state machine model [5].

Fig. 3. The anomaly detection problem for state sequences.

Fig. 4. The time to alarm (TTA) problem in sequential anomaly detection.
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For host-based intrusion detection, a complete observation
sequence is typically a process in a host computer, but the meaning
of a process, or trace, varies from program to program. For some
programs, a process corresponds to a single task; for example, in
lpr, a SunOS program, each print job generates a separate trace. In
other programs, multiple processes are required to complete a
task. A simple case of a process trace consisting of seven system
calls is shown as follows:

o pen; read; mma p; mma p; o pen; read; mma p

According to Definition 2, a complete observation sequence is a
series of observation elements, which has enough length to be
specified either as a normal or abnormal behavior.

To detect sequential abnormal behaviors or attacks with
temporally related patterns, state transition models can be used
to distinguish normal sequences from abnormal sequences, where
a state can be defined as a short sequence of observation elements.
In the following, a formal description of the state in sequential data
is given.

Definition 3 (State and state sequence for anomaly detection).
A state xi = (oi+1.oi+2, . . ., oi+n) in sequential anomaly detection is a
short sequence or combination of several temporally successive
observation elements, which is a part of a complete observation
sequence. Based on the definition of states, a state sequence S = {x1,
x2, . . ., xT} can be obtained from the original complete observation
sequence {o1, o2, . . ., oN} by selecting a sliding window length l, i.e.,
xi+1 = (oi+l+1, oi+l+2, . . ., oi+l+n).

From the above definitions, it can be seen that the state
sequences are transformed from the original observation
sequences by appropriately selecting a sliding time window. For
example, if we select a sequence of 4 system calls as one state and
the sliding length between sequences is 1, the state transitions
corresponding to the trace {open, read, mmap, mmap, open, read,
mmap} are:
� S
tate 1: open, read, mmap, mmap
� S
tate 2: read, mmap, mmap, open
� S
tate 3: mmap, mmap, open, read
� S
tate 4: mmap, open, read, mmap

Based on the definition of states, the task of anomaly detection
is to make decisions of whether a state sequence is normal or
abnormal, which can be illustrated in Fig. 3. As we will explain in
the sequel, one of the main benefits for anomaly detection using
state transition models is the simplification of the labeling process
before machine learning algorithms can be used for model training.
In Fig. 4, there are four complete observation traces x1–x2–x3–x4–
x5, x1–x6–x3–x4–x5, x1–x2–x3–x7–x8 and x1–x6–x3–x7–x8, where the
former two traces are normal traces and the latter two are
abnormal. xi (i = 1, 2, . . ., 8) are states at different time steps, which
have been defined in the above. To determine the label of a
complete observation trace is usually easy since much a priori

information and knowledge can be obtained to distinguish a
complete normal trace from a complete abnormal one. For
example, in the training data, we usually know that whether
there is an attack during the observation of a complete data
sequence. Nevertheless, it is very difficult to determine whether a
single state xi (i = 1, 2, . . ., 8) is normal or abnormal. In many
supervised learning approaches to IDSs, the states in a normal trace
are all assumed to be normal and those states in an abnormal trace
are all labeled as abnormal. Although this kind of labeling is simple
to be implemented, it cannot describe the temporal behaviors and
sequential relationships among states and as illustrated in Fig. 4,
some states such as x1 and x2, cannot be simply labeled as normal
or abnormal.

Moreover, to detect sequential patterns in multi-stage attacks
more precisely, it is necessary to find a proper time point to
determine whether there is an attack and raise alarms during the
observation process. In Fig. 4, it can be seen that it is sufficient to
raise alarms at the state transitions after state x3 since it is obvious
that the transition from x3 to x4 will lead to normal traces while the
transition from x3 to x7 will lead to attacks. But at the states before
x3, it is not appropriate to determine whether a trace is normal or
abnormal. Thus, there is a proper time to alarm for intrusion
detection of sequential data, which has been rarely explored by
previous supervised learning methods. In the following section, we
will present an anomaly detection approach based on TD learning,
which will provide an efficient framework to select an appropriate
time to alarm during the detection of complex sequential
behaviors.

4. Anomaly detection based on Markov reward model
and TD learning

4.1. Markov reward model for anomaly detection in sequential data

Markov reward processes are popular stochastic models for
sequential modeling and decision making. A Markov reward
process can be denoted as a tuple {S, R, P}, where S is the state
space, R is the reward function, P is the state transition probability.
Let {xt jt = 0, 1, 2,. . .; xt 2 S} denote a trajectory generated by the
Markov reward process. For each state transition from xt to xt+1, a
scalar reward rt is defined. The state transition probabilities satisfy
the following Markov property:

Pfxtþ1jxt; xt�1; . . . ; x1; x0g ¼ Pfxtþ1jxtg (1)

For the anomaly detection problem discussed above, a Markov
reward model will be established in the following. In the Markov
reward model, the state xi and the state sequence S = {x1, x2, . . ., xT}
are defined by Definition 3 and the state transition probability can
be defined as follows.

Let N(xi) and A(xi) denote the sets of all possible normal and
abnormal state sequences starting from state xi, respectively. Let
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C(xi) be the total number of state transitions that start from xi. For any
two states xi and xj, let C(xi, xj) denote the total number of state
sequences which start from xi and have a state transition from xi to xj.

Definition 4 (State transition probability).
The state transition probability between two states xi, xj is defined as

Pðxi; x jÞ ¼
Cðxi; x jÞ

CðxiÞ
(2)

Then, the Markov reward model for anomaly detection of
sequential behaviors can be formally described as follows:

Definition 5 (Markov reward model for anomaly detection).
A Markov reward model M of a complete observation sequence
S = {x1, x2, . . ., xT} is defined as a triple {X, R, P}, where X is the set of
all possible states based on Definition 3, P is the state transition
probability given by Definition 4, and the reward function R:
x! r(x) is defined as

rðxÞ ¼
0; if x ¼ xT and S2Nðx1Þ
1; if x ¼ xT and S2Aðx1Þ
0; if x 6¼ xT

8<
: (3)

For every state, a probability of anomaly Pa(x) is defined as the
probability of a complete observation sequence, which starts from
x, being an abnormal sequence, i.e.

PaðxÞ ¼ Pfðx1; x2; . . . ; xTÞ 2AðxÞjx1 ¼ xg (4)

Then, for every state sequences S = {xi} (i = 1, 2, . . ., n), an
accumulated probability P(S) of anomaly can be computed as

PðsÞ ¼
Xn

i¼1

PaðxiÞ (5)

Therefore, the anomaly detection problem can be solved by
estimating the probability of anomaly for every state and
comparing the accumulated anomaly probability P(s) of a state
sequence S = {xi} (i = 1, 2, . . ., n) with a predefined threshold m. If
P(s) >m, then an alarm is generated to indicate the anomaly of the
sequence.

Theorem 1 shows that based on the reward function defined in
(3), there is equivalence between the estimation of anomaly
probability of states and the value function prediction of the
Markov reward model.

Theorem 1. The state value function V(x) of the Markov reward

model M in Definition 5 is equal to the probability of state anomaly

P(x), i.e., V(x) = P(x).

Proof. The value function V(x) of a Markov reward process is given
by

VðxÞ ¼ Ef
X

t

gtrtðxtÞjx1 ¼ xg (6)

&
In our discussion, due to the finite length of observation

sequences, the discount factor g is set to 1. By replacing the
expectation E{.} with weighted sum of probabilities, we get

VðxÞ ¼
X

i¼1;N

Pðxi1;xi2; . . . ; xiTðiÞjxi1 ¼ xÞ
X

t¼1;TðiÞ
rðxtÞ (7)

where P(xi1, xi2, . . ., xiT(i)jxi1 = x) denotes the probability of the
observation sequence {xi1, xi2, . . ., xT(i)} that starts from x, N is the
total number of possible observation sequences starting from x,
and T(i) is the length of the observation sequence.

Based on the definition of reward function in (3), the rewards
are all zeros except for the terminal states, where the reward is
either +1 or 0. Thus, the value function can be expressed as

VðxÞ ¼
X

i¼1;N

Pðxi1;xi2; . . . ; xiTðiÞjxi1 ¼ xÞrðxiTðiÞÞ (8)

For all the possible observation sequences starting from x, they
can be divided into two parts, i.e., abnormal and normal sequences.
By the definition of A(x) and N(x), we get

VðxÞ ¼
X

i2AðxÞ
Pðxi1; xi2; . . . ; xiTðiÞjxi1

¼ xÞrðxiTðiÞÞ þ
X

i2NðxÞ
Pðxi1; xi2; . . . ; xiTðiÞjxi1 ¼ xÞrðxiTðiÞÞ

¼
X

i2AðxÞ
Pðxi1; xi2; . . . ; xiTðiÞjxi1 ¼ xÞrðxiTðiÞÞ (9)

Since the anomaly probability of state x can be computed as

PðxÞ ¼ Pfðx1; . . . ; xTÞ 2Aðx1Þjx1 ¼ xg

¼
X

i2AðxÞ
Pfðxi1; xi2; . . . ; xiTÞjx1 ¼ xg (10)

According to (9) and (10), we can directly get

VðxÞ ¼ PðxÞ (11)

Thus, it is proved in Theorem 1 that the learning prediction of
value functions for the Markov reward process is equivalent to
estimate the anomaly probabilities of the corresponding states. More
importantly, the result makes it possible to apply the TD learning and
prediction methods from the RL literature to intrusion detection so
that complex sequential behaviors can be detected efficiently.

4.2. The sequential anomaly detection algorithm using TD learning

Until now, temporal-difference learning [19] has been
considered as one of the most efficient approaches to value
function prediction without any a priori model information about
Markov reward processes. Different from supervised learning for
sequential prediction such as Monte Carlo estimation methods,
TD learning is to update the estimations based on the differences
between two temporally successive estimations, which consti-
tutes the main ideas of a popular class of TD learning algorithms
called TD(l) [19]. The aim of TD(l) is to estimate the value
functions of a Markov reward process by observing the state
transition sequences, where a reward signal is given after each
state transition. The temporal difference is defined as the
difference between two successive estimations and has the
following form

dt ¼ rt þ gṼtðxtþ1Þ � ṼtðxtÞ (12)

where xt+1 is the successive state of xt, ṼðxÞ denotes the estimate of
the value function V(x) and rt is the reward received after the state
transition from xt to xt+1.

For Markov reward processes with large or continuous state
spaces, linear function approximators are commonly used [22]. In
linear TD(l) algorithms, value functions are represented as

ṼðxÞ ¼ fTðxÞW ¼
Xn

j¼1

f jðxÞw j (13)

where f(x) = [f1(x), f2(x), . . ., fn(x)] is a vector of linear basis
functions and W ¼ ½w1;w2; . . . ;wn� is the weight vector.

In [22], linear TD(l) algorithms are proved to converge with
probability 1 under certain assumptions and the limit of
convergence W* is also derived, which satisfies the following
equation.

E0½AðXtÞ�W� � E0½bðXtÞ� ¼ 0 (14)
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AðXtÞ ¼~ztðfTðxtÞ � gfTðxtþ1ÞÞ (15)
Fig. 5. The response curve and its relationship with performance measures of multi-

stage attacks [29].
bðXtÞ ¼~ztrt (16)

~zt ¼ gl~zt�1 þ fðxtÞ (17)

where Xt = (xt, xt+1, zt+1) (t = 1, 2,. . .) form a new Markov process, xt

and xt+1 are two successive states, rt is the corresponding reward,
E0[�] stands for the expectation with respect to the unique invariant
distribution of {Xt}, l is a constant for eligibility traces zt(x), and g is
the discount factor.

As studied in [23], LS-TD(l) algorithms have better data
efficiency than conventional linear TD(l) algorithms. The least-
squares TD(l) algorithm computes the weight vector W by solving
Eq. (14) directly, i.e.,

WLS-TDðlÞ ¼ A�1
T bT ¼

XT

t¼1

AðXtÞ
 !�1 XT

t¼1

bðXtÞ
 !

(18)

where T is the length of the state trajectories.
Based on the analysis in Theorem 1, the LS-TD(l) algorithm

can be applied to estimate the anomaly probabilities by
predicting the value functions of the Markov reward process
defined above. At first, the observation data for training need to
be transformed to a state transition model, which has been
discussed in Section 3. Then, the reward function defined in (3)
is used to make the observation sequences become the state
sequences of a Markov reward model. After preparing the
training data, the following anomaly detection algorithm
(Algorithm 1), called TD_SAD (TD-based Sequential Anomaly
Detection), can be employed to construct the detection model by
approximating the state value functions of the Markov reward
process.

Algorithm 1. TD_SAD—The sequential anomaly detection algo-
rithm based on TD learning
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1: Given:

� State transition data {(xt, xt+1, rt)} (t = 1, 2, . . ., T) for training, where every

state transition trace with length T was evaluated as normal or abnormal

and the reward function was designed by (3).

� A termination criterion for the algorithm.

� The linear basis functions for LS-TD(l), and the

eligibility parameter l.

� Sequential data Sn ¼ fx0ig (i = 1, 2, . . ., n) for testing, and the threshold

parameter m.

2: Initialize:

(2.1) Let t = 0.

(2.2) Set the initial state x0.

3: Training: loop for maximum iteration number n:

Loop for every state sequences:

(3.1) For the current state xt,

� If xt is an absorbing state, r(xt) = rT, where rT is the

terminal reward.

� Otherwise, observe the state transition from xt to xt+1 and the reward

r(xt, xt+1), use Eq. (17) to update zt, and use (15), (16) to update

A(Xt), B(Xt).

(3.2) If xt is an absorbing state, i.e., the end of a state sequence, re-initialize

the process by setting xt+1 to a starting state of a observation sequence.

(3.3) Whenever updated estimations are desired, use Eq. (18) to compute

the coefficients and value function estimations.

(3.4) t = t + 1.

4: Output the detection model {WLS-TD, f(x)} for testing.

5: Testing: for every state x0 in testing sequence, the anomaly probability can be

estimated by

(19)Paðx0Þ ¼ Ṽðx0Þ ¼ ’T ðx0ÞWLS-TD ¼
Xn

j¼1

’ jðx0Þw j

6: Alarming: the accumulated anomaly probability of the testing sequence

Sn = {xi} (i = 1, 2, . . ., n) can be computed by (5). The decision output of the

anomaly detection system can be determined as follows:

If P(Sn) >m, then raise alarms,

else no alarms.
Based on the above detection strategy, the time to alarm as well
as the detection accuracy of the sequential anomaly detection
system is determined by the value function estimation of TD
learning and the threshold parameter. This conclusion can be
obtained by analyzing the response curve of detection outputs and
its relationship with the performance measures of the detection
system, which is illustrated in Fig. 5 [29]. In Fig. 5, the green curve
is the curve of the detection outputs, e.g., the value function
estimation of the proposed method and the red dotted line shows
the time interval that a multi-stage attack occurs. The blue dotted
line is the threshold and alarms are raised when the detection
outputs are greater than the threshold. Nbi denotes the total
number of observation states in the time interval of a multi-stage
attack, ndi denotes the number of states that the attack is correctly
detected by the detection system, and nbfa is the number of states
that false alarms occur. Tresponse can be viewed as the time to alarm
discussed in Section 3.

From Fig. 5, it can be seen that the detection accuracy of multi-
stage anomalous behaviors can be guaranteed by regulating the
output response of the detection model, i.e., to make the ratio ndi/
Nbi be closer to 1 and make nbfa/Nbi be closer to zero. In our case, the
output response is completely determined by the value function
prediction model of the Markov reward process. Thus, there are
two direct ways to improve the performance of the proposed
approach. One way is to increase the estimation accuracy of the TD
learning prediction algorithm. For example, it may be beneficial to
use TD(l) with nonlinear approximation abilities such as the
kernel LS-TD(l) algorithm in [26]. However, in our following
experiments, linear LS-TD(l) has satisfactory performance when
compared with previous approaches. Another way to improve the
detection performance is to select the optimal threshold parameter
by a threshold determination procedure, which will be used in the
experimental section of this paper.

4.3. Analysis and discussions

The sequential anomaly detection method based on TD learning
transforms the estimation of anomaly probability of states to the
learning prediction of state value functions of a Markov reward
process. Compared with previous efforts on anomaly detection
based on machine learning, the approach proposed in this paper
has advantages in the following aspects. Firstly, it does not need
precise labeling of training data and only evaluative reward signals
on complete observation sequences are needed. The TD learning
algorithms developed in the RL literature can be applied so that the
sequential nature of complex behaviors can be modeled in an
efficient way. Secondly, the computational complexity of TD
learning algorithms is linear with respect to the number k of state
features and the length m of traces, i.e., it has time complexity of
O(km), which is much lower than other statistical modeling
approaches based on Markov models [12,18]. For example, the
training algorithm for HMMs is very expensive, i.e., it runs in time
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O(nm2), where n is the number of states in the HMM and m is the
size of the trace. When TD learning prediction methods using
function approximators are used, the number k of state features
can become much smaller than n. Moreover, compared with other
statistical modeling approaches such as HMMs and general
Markov chain models [13], our method only implicitly constructs
the probabilistic model and the detection of anomalies is based on
the estimation of value functions, which has been proved to be
equivalent to the estimation of anomaly probabilities. In [13], the
robustness of Markov chain modeling techniques was studied and
it was shown that when explicitly estimating the probabilistic
structure of the Markov chain model for normal data, the detection
accuracy was very sensitive to the noise of data, i.e., when the
intrusion data were mixed with normal data, the performance of
the Markov chain model would become worse. Nevertheless, in our
approach, the detection accuracy is not influenced by the mixing of
normal and abnormal data due to the hybrid modeling strategy.

The semi-supervised learning and reinforcement learning
methods for intrusion detection [14,16] are closely related to
the research work in this paper. However, there are some major
differences among these approaches. In the semi-supervised
model based on POMDP [14], both actions and rewards are
considered, where the actions correspond to whether to raise
alarms or not and the rewards reflect the costs of certain security
policies, e.g., time to alarm,—the elapsed time between the
beginning of a real attack and its first detection, etc. Moreover,
the estimation of a POMDP model is computationally expensive.
Furthermore, another major difference between the proposed
Markov reward model and the semi-supervised POMDP model in
[14] is that in our model, no action policies are considered and the
anomaly detection problem is modeled as an equivalent learning
prediction task for an appropriately defined Markov reward
process. This can greatly reduce the computational complexity
and realize the main goal of anomaly detection in an efficient way.
An earlier work on reinforcement learning methods for intrusion
detection was presented in [16], where a CMAC neural network
was used to detect denial-of-service (DOS) attacks based on the
feedback signals of protected systems. The results showed that
reinforcement learning was suitable to realize autonomous
intrusion detection systems without much work on labeling of
training samples. However, the method in [16] only used very
simple update rules of reinforcement learning, which lack rigorous
theoretical analysis on convergence and generalization ability, and
the application was limited to a particular type of Denial-of-Service
(DOS) attacks.

5. Experimental results

To evaluate the effectiveness of the proposed approach,
experiments on anomaly detection for host computers using
system call data were conducted. In the experiments, a wide
variety of data sets were used, which include ‘‘live’’ normal data,
i.e., traces of programs collected during normal usage of a
production computer system, and different kinds of multi-stage
cyber attacks including buffer overflows, symbolic link attacks,
Trojan programs, etc. Table 1 shows some of the details of the data,
Table 1
System call data for performance evaluation.

Training and Threshold Selection Normal Trace Number

Attack Trace Number

Testing Normal Trace Number

Attack Trace Number

Total system call number
where four kinds of attack data as well as normal data are
considered. The data used in the experiments were typical data of
sequential behaviors collected from real or simulated environ-
ments and they have been widely studied by other researchers to
evaluate the performance of intelligent modeling and prediction
methods for intrusion detection [20,21]. All of these data sets are
publicly available at the website of Department of Computer
Science, the University of New Mexico [17].

In the data sets, each trace is a sequence of system calls
generated by a single process from the beginning of its execution to
the end. Since the traces were generated by different programs
under different environments, the number of system calls per trace
varies widely. In the experiments, four different classes of system
call traces were used, which correspond to four types of intrusive
program behaviors, i.e., MIT live lpr, sendmail, ps, and login. Here,
‘‘live’’ is defined to be traces of programs collected during normal
usage of a production computer system, and ‘‘synthetic’’ is defined
to be traces collected by running a prepared script, i.e., the program
options were chosen solely for the purpose of exercising the
program, and not to meet any real user’s requests. For detailed
discussion of the properties of the data sets, please refer to [20].

As shown in Table 1, the four types of system call traces were
divided into two parts. One part is for model training and threshold
determination and the other part is for performance evaluation.
Table 1 shows the numbers of normal and attack traces for training
and testing. As can be seen in the table, the numbers of testing
traces are usually larger than those of training traces. During the
threshold determination process, the same data sets are used as
the training process, i.e., the training data sets and the data sets for
threshold determination are the same. In the testing stage, two
criteria for performance evaluation are used, which include the
detection rate Dr and the false alarm or false positive rate Fp, and
they are computed as follows:

Dr ¼ nd

na
(20)

F p ¼ Na

N
(21)

where nd is the number of abnormal traces that have been correctly
identified by the detection model and na is the total number of
abnormal traces, Na is the number of normal states that have been
incorrectly identified as anomaly by the detection model, and N is
the total number of normal states. In the computation of false
alarm rates, all false alarms during a long state trace are all counted
and the total sum of false alarms is divided by the number of all
states in the traces.

For the four types of program data, i.e., MIT-lpr, ps, login, and
sendmail, four different anomaly detection models were separately
trained using the TD-based sequential anomaly detection
(TD_SAD) method (Algorithm 1). Every state in the Markov reward
model has a sequence length of 6, which has been optimally
selected using information-theoretic measures in previous work
[27]. The reward function is defined by (3). To compare the
performance of the TD_SAD method developed in this paper with
previous approaches, the experimental results in [12,25], where
lpr sendmail ps login

10 13 12 10

20 5 3 1

2,703 67 11 11

1,001 7 8 3

1,023,950 223,733 8333 10,948



Table 2
Performance comparisons between TD and HMM methods.

TD_SAD HMM [12]

Detection rate False alarm rate Detection rate False alarm rate

lpr 100% 0.00749 100% 3E�4

sendmail 100% 0.002951 61.5% 0.05a

84.6% 0.10a

92.3% 0.20a

ps 100% 0.003815 100% –b

login 100% 0 77.8% –b

a The false alarm rates were computed based on the percentages of incorrectly identified normal traces.
b No normal traces were used as testing data.

Table 3
Performance comparisons between TD and supervised pattern classification methods.

TD_SAD SVM Naı̈ve Bayes C4.5 RIPPER Logistic regression

live lpr MIT detection rate false alarm rate 100% 99.80% 100% 99.90% 99.80% 99.90%

0.75% 0.14% 62.31% 0.11% 0.11% 0%

sendmail detection rate false alarm rate 100% 40% 92% 40% 48.00% 64%

0.29% 0.28% 84.97% 1.15% 2.31% 2.31%
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HMMs and other supervised learning methods were applied to the
same data sets, are also shown in the following tables.

In Table 2, the detection rates and false alarm rates of TD_SAD and
HMMs are compared with respect to the four types of program
traces. It is illustrated that for all the data sets, TD_SAD has a
detection rate of 100% with very low false alarm rates. While HMMs
Fig. 6. ROC curves of TD_SAD for the lpr da

Fig. 7. ROC curves of C4.5 and Naı̈ve Bayes on th
have lower detection rates and the corresponding false alarm rates
are usually higher than TD_SAD. In addition, as indicated in the
previous section, HMMs have larger computational complexity than
the proposed TD_SAD method. In Table 2, the false alarm rates of
HMMs in the data sets of ps, and login were not computed since no
normal data were used in the testing stage of [12].
ta set (a) and the sendmail data set (b).

e lpr data (a) and the sendmail data (b) [25].
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By making use of the data sets of two program behaviors, i.e.,
MIT live lpr and sendmail, Table 3 makes comparisons between the
TD_SAD method and some popular supervised pattern classifica-
tion methods including support vector machines (SVMs), Naı̈ve
Bayes methods, C4.5 decision trees, RIPPER and logistic regression,
etc. [25]. In [25], a ‘bag of system calls’ representation for intrusion
detection of system call sequences was proposed so that the
intrusion detection problem was solved as a static pattern
classification task and various supervised learning methods were
employed.

From Table 3, it is also shown that TD_SAD can usually obtain
higher detection rates than other supervised learning methods and
the false alarm rates of TD_SAD are relatively low.

Fig. 6 depicts the ROC curves [24] obtained from the
performance evaluation of TD_SAD on the testing data of MIT live

lpr and sendmail, where different thresholds were selected and the
corresponding detection rates and false alarm rates were
computed. In Fig. 7, the ROC curves of C4.5 and Naı̈ve Bayes on
the lpr data and the sendmail data are plotted, which were obtained
in the research work in [25]. From Figs. 6 and 7, it is shown that
compared with other supervised learning methods such as C4.5
and Naı̈ve Bayes, the TD_SAD model can obtain very low false
alarm rates while having detection rates as high as 100%.

6. Conclusions

To overcome the weakness of previous anomaly detection
approaches, especially to solve the data labeling and sequential
behavior prediction problem, this paper suggests the TD_SAD
algorithm, a sequential anomaly detection method based on
temporal-difference (TD) learning, where intrusion detection of
multi-stage cyber attacks is studied as an application case. In the
proposed approach, a novel Markov reward model is established
for anomaly detection of data sequences and it is proved that under
certain assumptions, the learning prediction of value functions for
the Markov reward process is equivalent to estimate the anomaly
probabilities of the data sequences. Therefore, TD learning
algorithms from the RL literature can be used to construct
detection models and improve the performance of sequential
anomaly detection only by simplified labeling schemes using
evaluative signals or feedbacks. From the experiments in anomaly
detection of multi-stage cyber attacks, it is illustrated that
compared with previous anomaly detection approaches using
machine learning, the TD_SAD method can obtain comparable or
even better detection accuracies for complex sequential attacks.
More importantly, the proposed approach provides a new RL-
based anomaly detection technique with a simplified labeling
procedure and reduced computational complexity for sequential
data. Future work may need to be focused on the extension of the
proposed method to more general anomaly detection problems.
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