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Variational Inference for Infinite Mixtures of
Gaussian Processes With Applications to

Traffic Flow Prediction
Shiliang Sun, Member, IEEE, and Xin Xu, Member, IEEE

Abstract—This paper proposes a new variational approxima-
tion for infinite mixtures of Gaussian processes. As an exten-
sion of the single Gaussian process regression model, mixtures
of Gaussian processes can characterize varying covariances or
multimodal data and reduce the deficiency of the computationally
cubic complexity of the single Gaussian process model. The infi-
nite mixture of Gaussian processes further integrates a Dirichlet
process prior to allowing the number of mixture components
to automatically be determined from data. We use variational
inference and a truncated stick-breaking representation of the
Dirichlet process to approximate the posterior of hidden variables
involved in the model. To fix the hyperparameters of the model, the
variational EM algorithm and a greedy algorithm are employed.
In addition to presenting the variational infinite-mixture model,
we apply it to the problem of traffic flow prediction. Experiments
with comparisons to other approaches show the effectiveness of the
proposed model.

Index Terms—Bayesian learning, Dirichlet process, Gaussian
process, traffic flow prediction, variational inference.

I. INTRODUCTION

GAUSSIAN processes have proven to be a successful tool
for regression problems, e.g., modeling the robot arm

inverse dynamics [1]. Formally, a Gaussian process is a collec-
tion of random variables, any finite number of which obeys a
joint Gaussian prior distribution. For regression, the function
to be estimated is assumed to be generated by an infinite-
dimensional Gaussian distribution, and the observed outputs are
contaminated by additive Gaussian noise.

A common representation for the dependency among outputs
used in Gaussian processes is p(y) = N (y|0,K + σ2

nI), where
vector y consists of training outputs {y1, . . . , yN}, K is the
kernel matrix, and I is a unit matrix. The entries of K are
given by a kernel function (also called covariance function)
κ(·, ·) between pairs of inputs. Suppose that xi and xj are two
d-dimensional input vectors. The kernel matrix with the squared
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exponential kernel function can be given as Kij = κ(xi,xj) =
σ2

f exp[−∑d
m=1(xim − xjm)2/(2σ2

m)]. The hyperparameters
σf , σ1, . . . , σd, σn can be estimated from the training data.

However, Gaussian processes suffer from two major limita-
tions. First, using a stationary covariance function, Gaussian
processes cannot account for varying covariances or multi-
modal outputs. Second, parameter inference in Gaussian
processes requires the inversion of matrix K + σ2

nI, which
is computationally cubic with respect to the number of the
training data. Consequently, mixtures of Gaussian processes
[2]–[4] inspired by the mixtures of experts [5], [6] have been
proposed to address these problems, some of which used
infinite mixtures that place a Dirichlet process prior on the
mixture component to allow the number of components to
be automatically determined from data. Mixtures of Gaussian
processes naturally overcome the first limitation of the single
Gaussian process model by using multiple Gaussian processes.
In addition, the second limitation is resolved, because now, the
inversion of a large matrix is replaced by inversions of multiple
smaller matrices [4].

The following two kinds of probability models are consid-
ered in these mixtures of Gaussian processes: 1) a conditional
model [2], [3] and 2) a full generative model [4], [7]. The first
model does not model the distribution of the input, whereas
the second model formulates the joint distribution between the
input and the output and leads to a powerful consistent manner
to designate the responsibility of each component for a certain
input. We also adopt the full generative model in this paper.

Inference problems for these models involve fixing the values
of hyperparameters and estimating the posterior distribution
of hidden variables composed of parameters and latent vari-
ables. The complexity of the inference problem for mixtures
of Gaussian processes necessitates approximate inference tech-
niques. Although the stochastic Markov chain Monte Carlo
sampling methods can be used for approximate inference, they
are computationally demanding, and it is difficult to diagnose
the convergence of the sampling process [8]. As an alternative,
variational inference is a deterministic approximation technique
that provides an analytical approximation to the true posterior.
This condition is accomplished by exploiting a given factor-
ization form or a specific parameter form such as Gaussian
distributions, which makes integrations or summations involved
feasible [8], [9]. Because variational inference is faster and
more convenient for predicting the outputs of new inputs (e.g.,
considering the real-time requirement of traffic prediction in
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intelligent transportation systems), we adopt variational infer-
ence techniques in this paper.

Most previous inference methods for a mixture of Gaussian
processes are built on Markov chain Monte Carlo sampling
methods. Recently, a variational mixture of Gaussian processes
has been proposed [7]. However, it is not an infinite-mixture
model, and thus, the number of components needs to be
specified a priori, which could cause difficult model selection
problems. Moreover, it was only validated on 2-D data sets
and lacks evaluations on higher dimensional applications, as
acknowledged by the authors themselves. In this paper, we pro-
pose a new variational inference approach to infinite mixtures
of Gaussian processes (IMGP) using the Dirichlet process prior
and apply it to the real high-dimensional application problem
of traffic flow prediction.

The contribution of this paper is twofold. First, for IMGP,
we propose a new variational approximation for estimating
hidden variables and hyperparameters. To the best of our
knowledge, this approach has not been attempted. Second,
the infinite-mixture model and the corresponding variational
approximation are, for the first time, applied to the traffic
prediction problem and successfully outperform the state-of-
the-art Bayesian network (BN) approach [10]. This case would
be very interesting to intelligent transportation systems.

The remainder of this paper is organized as follows.
Section II introduces the infinite-mixture model of Gaussian
processes, including the adopted Gaussian and Dirichlet
processes. Section III presents the detailed variational inference
techniques for estimating the posterior distribution of hidden
variables and the values of hyperparameters. Section IV reports
experimental results on applying the proposed model to traffic
flow prediction and compares it with some other methods,
including the BN approach. Finally, Section V gives concluding
remarks and future research directions.

II. INFINITE MIXTURES OF GAUSSIAN PROCESSES

By introducing an additional random variable, the Gaussian
process model can reach an equivalent representation that re-
moves the dependency between training outputs. This condition
will facilitate the variational approximation treatments. This
section gives the formulation of this Gaussian process model
and briefly reviews the Dirichlet process model, with an em-
phasis on its stick-breaking representation. These approaches
would be instructive to the presentation of the subsequent
variational inference techniques.

We also give the graphical model representation for the
adopted IMGP. The local expert and gating network, by the
terminology of mixtures of experts [5], can be characterized
from the distributions represented by the graphical model.

A. Gaussian Processes

Suppose that the training set D has N examples
{(xn, yn)}Nn=1. For IMGP, each Gaussian process component
is assumed to have a support set of M training examples
(M < N). The support sets Ik for the kth component with k ∈
{1, . . . ,∞} used to model the corresponding Gaussian process

are selected from the original training set. The M ×M kernel
matrix Kk, which is confined to the corresponding support set
of the kth Gaussian process, is defined by the kernel function as

κk(xi,xj) = σ2
kf exp

(
−

d∑
m=1

1
2σ2

km

(xim − xjm)2
)

. (1)

Suppose that, for input x, the component indicator variable
z = k. The Gaussian process is then specified by the following
univariate Gaussian distribution model:

p(y|x, z = k,wk, rk) = N (y|w�k φk

(
x), r−1

k

)
(2)

where weight vector wk has a Gaussian distribution
N (wk|0,U−1

k ), φk(x) is given by the kernel function values
between x and the support set, i.e.,

φk(x)=
[
κk

(
x,xIk

1

)
, κk

(
x,xIk

2

)
, . . . , κk

(
x,xIk

|Ik |
)]�

(3)

and r−1
k is the variance. The inverse covariance (also called pre-

cision) Uk is set to Kk + σ2
kbI, where σ2

kb is used to avoid ma-
trix singularity [7]. Define θk = {σkf , σk1, σk2, . . . , σkd, σkb}.
θk and Ik are used to define the parameters of the Gaussian
process model and are thereby called hyperparameters, which
are omitted in (2). Parameter rk has a Gamma prior distribution
Γ(rk|a0, b0) ∝ ra0−1

k e−b0rk with hyperparameters a0 and b0.
This linear Gaussian process model has been used, e.g., in

[7] and [11], and is an equivalent parametric representation of
Gaussian processes, which can readily be shown. For the data
set D, we may assume that the output y = [y1, . . . , yN ]� is
generated by y = Kw + ξ, where K is the kernel matrix, w
has a Gaussian distribution N (w|0,K−1), and noise variable
ξ has a distribution N (ξ|0, σ2

nI). The joint distribution of
y is therefore Gaussian N (y|0,K + σ2

nI). We can recover
this model by setting variables involved in (2) as wk = w,
Kk = K, σkb = 0, and r−1

k = σ2
n and the support set as the

whole data set D.

B. Dirichlet Processes for Mixtures of Gaussian Processes

The Dirichlet process [12] is a prior model used for
Bayesian data analysis. Each draw from a Dirichlet process is a
discrete distribution, with marginal distributions being Dirichlet
distributions.

Let Φ be a random variable, H be a distribution over Φ,
and α0 be a positive real scalar. Distribution G is said to be
Dirichlet process distributed G ∼ DP (α0,H) if any k par-
titions {A1, . . . , Ak} of the corresponding probability space
obey a Dirichlet distribution, i.e.,

(G(A1), . . . , G(Ak)) ∼ Dir (α0H(A1), . . . , α0H(Ak)) (4)

where k is a natural number [13], [14]. The Dirichlet process
can be adopted to extend a usual finite mixture model to a
mixture with a countably infinite number of components. This
approach would be clear by considering the following stick-
breaking construction of the Dirichlet process [15].

Consider two infinite collections of independently
drawn random variables Φi ∼ H and νi ∼ Beta(1, α0) for
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i = {1, . . . ,∞}, where the beta distribution has the form
Beta(ν|a, b) ∝ νa−1(1− ν)b−1. By introducing a proportion
variable πi = νi

∏i−1
j=1(1− νj), we can reach the stick-

breaking representation of G as

G =
∞∑

i=1

πiδΦi
(5)

where δΦi
is a delta function whose value is 1 at location Φi

and 0 elsewhere. The mixing proportions {πi} always sum to
one and can imaginarily be given by breaking a unit length
stick into a countably infinite number of pieces. The product∏i−1

j=1(1− νj) denotes the previous remaining length of stick,
and multiplication by νi gives the length of the stick currently
broken off.

The N observations {(xn, yn)}Nn=1 can be modeled by the
associated latent parameters {Φn}Nn=1, which characterize the
generation of these observations. Because distribution G is
discrete, {Φn}Nn=1 should take no more than N different values.
Consequently, the N examples can be partitioned into different
groups, and the whole model serves as a mixture model. It is
validated that the number of clusters only logarithmically grows
in N [13].

Let zn be a latent variable that assigns the index of the param-
eter associated with example (xn, yn). The distribution of zn

can be regarded as a multinomial distribution with parameters
{π1, . . . , π∞}. With the values of {z1, . . . , zN} and the model
assumption on the observations (independent or dependent),
we can formulate the joint distribution of the training set with
the associated parameters. Because the Gaussian process model
adopted in this paper breaks the dependency among outputs,
given all the parameters, the data would independently be
drawn (the model for the inputs will be introduced in the next
section).

C. Graphical Model Representation

The graphical model for our IMGP is shown in Fig. 1. The
distribution over the input space for a mixture component is
given by a Gaussian distribution with a full covariance, i.e.,

p(x|z = k,μk,Rk) = N (
x|μk,R−1

k

)
(6)

where Rk is the inverse covariance. This input model is iden-
tical to the model used in [4] and is often flexible enough to
provide a good performance, although we can consider to adopt
mixtures of Gaussian distributions (e.g., [16]) to further finely
model the input space. Parameters μk and Rk are further spec-
ified by a Gaussian distribution prior and a Wishart distribution
prior with additional hyperparameters, respectively, i.e.,

μk ∼ N
(
μ0,R

−1
0

)
, Rk ∼ W(W0, ν0). (7)

To relate our mixture model with the mixture of experts
model, we calculate the responsibility of the mixture compo-
nents for a new input x as

p(z|x) =
p(z)p(x|z)∑
z p(z)p(x|z)

(8)

Fig. 1. Graphical model representation of IMGP.

where all the parameters and hyperparameters involved are
already determined by optimizing certain objectives on the
available data D. The distribution of the corresponding output
y can be formulated by the component responsibility and the
Gaussian process model given in (2). For regression prob-
lems such as the traffic prediction considered in this paper,
the prediction for y would be the weighted average of the
Gaussian means, where the weights are the responsibilities, and
the Gaussian means are provided by (2) evaluated at the new
input x. Therefore, by the terminology of mixtures of experts,
(8) takes the role of the gating network, whereas (2) serves as
the local Gaussian process expert.

III. VARIATIONAL INFERENCE FOR INFINITE

MIXTURES OF GAUSSIAN PROCESSES

Define parameter sets ν̄ ={ν1, . . . , ν∞}, μ̄={μ1, . . . ,μ∞},
R̄ = {R1, . . . ,R∞}, w̄ = {w1, . . . ,w∞}, and r̄ =
{r1, . . . , r∞} and the latent variable set z̄ = {z1, z2, . . . , zN}.
Thus, the hidden variable set is Ω = {ν̄, μ̄, R̄, w̄, r̄, z̄}. The
variables in the leftmost column in Fig. 1, {θ1, . . . ,θ∞}
and {I1, . . . , I∞} constitute the hyperparameter set. The
role of inference would be to determine the values of the
hyperparameters and the posterior distribution of the hidden
variables.

By the graphical model given in Fig. 1, the joint distribution
of all the random variables (the hyperparameters are omitted) is
given by

p(D,Ω) = p(ν̄)p(μ̄)p(R̄)p(w̄)p(r̄)

×
N∏

i=1

p(zi|ν̄)p(xi|zi, μ̄, R̄)p(yi|xi, zi, w̄, r̄)

=
∞∏

k=1

p(νk)p(μk)p(Rk)p(wk)p(rk)

×
N∏

i=1

p(zi|ν̄)p(xi|zi, μ̄, R̄)p(yi|xi, zi, w̄, r̄) (9)

where we have used the equalities p(ν̄) =
∏

k p(νk),
p(μ̄) =

∏
k p(μk), p(R̄) =

∏
k p(Rk), p(w̄) =

∏
k p(wk),

and p(r̄) =
∏

k p(rk). Although we can formulate the posterior
p(Ω|D) by the Bayes theorem [17] p(Ω|D) = p(D,Ω)/p(D),
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the evaluation of p(D) from p(D,Ω), which involves
integration and summation over the hidden variables, is
infeasible even for a very small number of mixture components
due to the coupling among these variables. Consequently, this
paper uses variational inference to approximate the posterior
distribution.

Variational methods have their root in the early work of
calculus of variations, which concerns functional derivatives
about how the value of a functional changes with respect
to infinitesimal changes of the input function [8], [18]. We
can optimize a certain functional to explore desirable input
functions that correspond to the optimal value of the functional.
By restricting the range of input functions to be explored,
variational methods naturally lead to approximations, although
they are not intrinsically approximate [8]. For example, pos-
sible restrictions include specific parametric forms such as a
Gaussian or particular factorization assumptions.

Suppose that q(Ω) is an approximation for the true posterior
p(Ω|D). A useful decomposition for variational inference is

ln p(D) = L(q) + KL(q‖p) (10)

where L(q) =
∫

q(Ω) ln{p(D,Ω)/q(Ω)}dΩ, and KL(q‖p) =∫
q(Ω) ln{q(Ω)/p(Ω|D)}dΩ. The Kullback–Leibler diver-

gence KL(q‖p) is nonnegative and is zero if and only if
q(Ω) = p(Ω|D) [19]. L(q) is the lower bound of ln p(D).
Maximizing this lower bound is equivalent to minimizing the
Kullback–Leibler divergence. However, minimizing KL(q‖p)
to solve q(Ω) is infeasible, because p(Ω|D) is unknown. There-
fore, optimizing the lower bound is widely used in variational
inference to reach a good approximation distribution.

A. Truncated Representation of the Dirichlet Process

To formulate the variational posterior q(Ω), we approximate
the posterior Dirichlet process by a truncated stick-breaking
representation, as shown in [14] and [20]. We fix a value T
and let q(νT = 1) = 1, which implies that the mixture propor-
tions πi are zero for i > T , and use the following factorized
variational distribution to approximate p(Ω|D):

q(Ω) =
T−1∏
t=1

q(νt)
T∏

k=1

q(μk)q(Rk)q(wk)q(rk)
N∏

n=1

q(zn).

(11)

Note that the hidden variables in Ω do not share the same vari-
ational parameters, e.g., distributions q(ν1) and q(ν2) usually
have different parameters, and there have been no restrictions
placed on the functional forms of the individual factor distribu-
tions [8]. Variational inference in terms of this factorized form
is also called mean field variational inference [21].

The truncation level T is not a part of our prior infinite-
mixture model. It is a variational parameter for pursuing an
approximation to the true posterior. Although it can freely be
set or selected by maximizing L(q) without fear of overfitting,
in this paper, we just fix a single value as done in [14].

With this full factorization formulation, we can solve for the
variational distribution by maximizing the lower bound L(q)

in (10). The solution is quite simple. That is, to compute the
variational distribution for a hidden variable ω ∈ Ω, we need to
compute the posterior mean of ln p(D,Ω) over the variational
distributions of all the other latent variables as

ln q(ω) = EΩ\ω [ln p(D,Ω)] + const (12)

where “const” denotes a constant that is independent of ω and
is used to normalize the corresponding distribution [8], [14].

B. Variational Distribution

This section details how we can make use of (12) to calculate
the variational factors. Note that the variational inference is
essentially iterative, because it represents a distribution factor
using knowledge about other factors.

1) q(νt): Any terms that are independent of νt will be
absorbed into the additive constant. Thus, we have

ln q(νt) = ln p(νt) +
N∑

n=1

EΩ\νt
[ln p(zn|ν̄)] + const. (13)

To solve the term EΩ\νt
[ln p(zn|ν̄)], we employ the follow-

ing expression [14]:

Eq[ln p(zn|ν̄)]

=Eq

[
ln

( ∞∏
i=1

(1−νi)1[zn>i]ν
1[zn=i]
i

)]

=
∞∑

i=1

{q(zn >i)Eq[ln(1−νi)]+q(zn = i)Eq[ln νi]} . (14)

Notice that q(zn > T ) = 0. Therefore, we can truncate the
aforementioned summation at i = T [14]. This approach yields

Eq [ln p(zn|ν̄)]

=
T∑

i=1

{q(zn > i)Eq [ln(1− νi)] + q(zn = i)Eq[ln νi]} .

Consequently, for the variational distribution q(νt), we have

ln q(νt) + const

= ln p(νt) +
N∑

n=1

[q(zn > t) ln(1− νt) + q(zn = t) ln νt]

= ln p(νt) +

[
N∑

n=1

q(zn > t)

]
ln(1− νt)

+

[
N∑

n=1

q(zn = t)

]
ln νt. (15)

Because νi ∼ Beta(1, α0), we have p(νt) ∝ (1− νt)α0−1.
Define νt1 =

∑N
n=1 q(zn > t) and νt2 =

∑N
n=1 q(zn = t).

According to (15), we get q(νt) ∝ ννt2
t (1− νt)(νt1+α0)−1.

That is, the variational distribution q(νt) is also a beta distri-
bution, with νt ∼ Beta(νt2 + 1, νt1 + α0).
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2) q(μk): Likewise, any terms that are independent of μk

will be absorbed into the additive constant as

ln q(μk)=ln p(μk)+
N∑

n=1

EΩ\μk

[
ln p(xn|zn, μ̄, R̄)

]
+const.

(16)

For the term EΩ\μk
[ln p(xn|zn, μ̄, R̄)], we employ the fol-

lowing expression:

Eq

[
ln p(xn|zn, μ̄, R̄)

]
= Eq

[
ln

( ∞∏
i=1

p(xn|μi,Ri)1[zn=i]

)]

=
∞∑

i=1

{q(zn = i)Eq[ln p(xn|μi,Ri)]}

=
T∑

i=1

{q(zn = i)Eq[ln p(xn|μi,Ri)]} .

(17)

Consequently, for the variational distribution q(μk), we have

ln q(μk)+const

=ln p(μk)+
N∑

n=1

{q(zn =k)ERk
[ln p(xn|μk,Rk)]}

=ln p(μk)− 1
2

N∑
n=1

{
q(zn =k) (xn−μk)� ERk(xn−μk)

}

=−1
2
(μk−μ0)

�R0(μk−μ0)

− 1
2

N∑
n=1

{
q(zn =k)(xn−μk)�(ERk)(xn−μk)

}
. (18)

Define Rk1 = ERk, Rk2 =
∑N

n=1 q(zn = k)Rk1xn, and
Rk3 =

∑N
n=1 q(zn = k)Rk1. Plugging them into the afore-

mentioned equation results in

−2 ln q(μk) + const = μ�k R0μk − 2μ�k R0μ0

+ μ�k Rk3μk − 2μ�k Rk2. (19)

Therefore, the variational distribution q(μk) is a Gaussian
distribution, with

μk ∼ N
(
(R0 + Rk3)−1(R0μ0 + Rk2), (R0 + Rk3)−1

)
.

3) q(Rk): The central equation is

ln q(Rk)=ln p(Rk)+
N∑

n=1

EΩ\Rk

[
ln p(xn|zn, μ̄, R̄)

]
+const.

(20)

By (17), we have

ln q(Rk) + const

=ln p(Rk)+
N∑

n=1

{
q(zn =k)Eμk

[ln p(xn|μk,Rk)]
}

=
[
ν0−d−1

2
ln |Rk|− 1

2
tr
(
RkW−1

0

)]

+
1
2

N∑
n=1

{q(zn = k)[ln |Rk|

−tr
[
RkE

(
(xn−μk)(xn−μk)�

)]]}
.

(21)

Define μk1 =
∑N

n=1 q(zn = k) and μk2 =
∑N

n=1 q(zn =
k)Eμk

[(xn − μk)(xn − μk)�]. The variational distribution
q(Rk) is thus a Wishart distribution, with

Rk ∼ W(Wk, νk) (22)

where (Wk)−1 = (W0)−1 + μk2, and νk = ν0 + μk1.
4) q(wk): Absorbing any terms independent of wk into the

additive constant results in

ln q(wk) = ln p(wk)

+
N∑

n=1

EΩ\wk
[ln p(yn|xn, zn, w̄, r̄)] + const. (23)

We have

Eq [ln p(yn|xn, zn, w̄, r̄)]

= Eq

[
ln

( ∞∏
i=1

p(yn|xn,wi, ri)1[zn=i]

)]

=
∞∑

i=1

{q(zn = i)Eq [ln p(yn|xn,wi, ri)]}

=
T∑

i=1

{q(zn = i)Eq [ln p(yn|xn,wi, ri)]} . (24)

Consequently, the variational distribution q(wk) can be re-
formulated as

ln q(wk) + const

= ln p(wk) +
N∑

n=1

{q(zn = k)Erk
[ln p(yn|xn,wk, rk)]}

= −1
2
w�k Ukwk

− 1
2

N∑
n=1

{
q(zn = k)

(
yn −w�k φk(xn)

)2
Erk

}
. (25)

Define rk1 = Erk, rk2 =
∑N

n=1 q(zn = k)rk1ynφk(xn), and
rk3 =

∑N
n=1 q(zn = k)rk1φk(xn)φk(xn)�. Plugging them

into the aforementioned equation, we get

−2 ln q(wk) + const = w�k Ukwk − 2w�k rk2 + w�k rk3wk.
(26)

Therefore, the variational distribution q(wk) is a Gaussian
distribution, with

wk ∼ N
(
(Uk + rk3)−1rk2, (Uk + rk3)−1

)
.
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5) q(rk): The central equation for solving q(rk) is

ln q(rk)=ln p(rk)+
N∑

n=1

EΩ\rk
[ln p(yn|xn, zn, w̄, r̄)]+const.

(27)

By (24), we rewrite the aforementioned equation as

ln q(rk)+const

=ln p(rk)+
N∑

n=1

{q(zn =k)Ewk
[ln p(yn|xn,wk, rk)]}

=[(a0−1) ln rk−b0rk]

+
1
2

N∑
n=1

{
q(zn =k)

[
ln rk−rkE

[(
yn−w�k φk(xn)

)2]]}
.

Define wk1 = (1/2)
∑N

n=1 q(zn = k) and wk2 =
(1/2)

∑N
n=1 q(zn = k)Ewk

[(yn −w�k φk(xn))2]. The
variational distribution q(rk) is a Gamma distribution,
with

rk ∼ Γ(a0 + wk1, b0 + wk2). (28)

6) q(zn): The equation for solving q(zn) is slightly more
complex, because zn is involved in multiple variational factors,
i.e.,

ln q(zn) + const = EΩ\zn

[
ln p(zn|ν̄) + ln p(xn|zn, μ̄, R̄)

+ ln p(yn|xn, zn, w̄, r̄)] . (29)

The right-hand side of (29) can be rewritten as

∞∑
i=1

{1[zn > i]E [ln(1− νi)] + 1[zn = i]E[ln νi]

+ 1[zn = i]E [ln p(xn|μi,Ri)]

+1[zn = i]E [ln p(yn|xn,wi, ri)]}

=
T∑

i=1

{1[zn > i]E [ln(1− νi)] + 1[zn = i]E[ln νi]

+ 1[zn = i]E [ln p(xn|μi,Ri)]

+1[zn = i]E [ln p(yn|xn,wi, ri)]}

=
T∑

i=1

{
1[zn > i]E [ln(1− νi)] + 1[zn = i]E[ln νi]

+ 1[zn = i]
1
2

[E ln |Ri| − d ln(2π)

−E
(
(xn − μi)

�Ri(xn − μi)
)]

+ 1[zn = i]
1
2

[
E ln ri − ln(2π)

− E

(
ri

(
yn −w�i φi(xn)

)2) ]}
.

(30)

Define ln ρnt = E[ln νt] +
∑t−1

i=1 E[ln(1− νi)] + (1/2)
[E ln |Rt|+ E ln rt − (d + 1) ln(2π)−E((xn−μt)�Rt(xn−
μt))− E(rt(yn −w�t φt(xn))2)] and ρ̃nt = ρnt/

∑T
i=1 ρni.

Then, we have q(zn = t) = ρ̃nt, which means that zn is chosen
according to a multinomial probability distribution.

C. Inferring the Hyperparameters

Some hyperparameters are quite generic without the need
for further estimation and are thus fixed. μ0 and R0 are set
to the mean μx and inverse covariance Rx of the training data,
respectively. Parameter ν0, which is the number of degrees of
freedom under a Wishart distribution, is set to the dimension-
ality d of the inputs. W0 is set to Rx/d such that the mean of
Rk under the Wishart distribution is Rx. Parameters a0 and b0

in the gamma distribution Γ(rk|a0, b0) are set with a0 = 10−2

and b0 = 10−4, respectively, to give broad priors following [7]
and [22]. The concentration parameter α0 in defining νk ∼
Beta(1, α0) is set to 1, as done in [14]. This parameter can
also be predetermined by calculating the expected number of
mixture components according to [23]. For example, if we have
2000 training examples and α0 = 1, the expected number will
be around 8.

The only hyperparameters to be estimated are Θ =
{θ1:T , I1:T } under the truncated stick-breaking representation.
The variational expectation–maximization (EM) algorithm [8]
and a greedy algorithm are, respectively, used to estimate the
covariance-function-related hyperparameters θ1:T and support
sets I1:T following [7].

1) Fixing θ1:T : The variational EM algorithm iteratively
maximizes EΩ ln p(D,Ω|θ1:T ) with the E- and M-steps to
update hyperparameters, where the expectation is taken over
the variational distribution. For the standard EM algorithm [8],
[10], the expectation would be calculated over a true posterior
distribution.

The factors in p(D,Ω) related to these hyperparameters
should be retained for maximization, whereas other factors can
be regarded as being absorbed into a constant. Therefore, we
can maximize the following expression:

E

{
T∑

k=1

ln p(wk) +
N∑

n=1

ln(yn|xn, zn, w̄, r̄)

}

=
1
2

T∑
k=1

[
ln |Uk| − tr

(
UkE

(
wkw�k

))]

+
N∑

n=1

T∑
k=1

[q(zn = k)E ln p(yn|xn,wk, rk)]

=
1
2

T∑
k=1

[
ln |Uk| − tr

(
UkE

(
wkw�k

))

+ 2
N∑

n=1

q(zn = k)E ln p(yn|xn,wk, rk)

]
.

(31)
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The term E(wkw�k ) can easily be computed by ex-
ploiting the formulation of q(wk). The computation of
E ln p(yn|xn,wk, rk) uses the following result:

E ln p(yn|xn,wk, rk) + const

=
1
2

{
E ln rk − (Erk)E

[(
yn −w�k φk(xn)

)2]}
(32)

where E ln rk and Erk are readily computed using properties of
the Gamma distribution.

Consequently, the following expression should be maxi-
mized to fix the hyperparameters:

T∑
k=1

{
ln |Uk| − tr

(
UkE

(
wkw�k

))

− (Erk)
N∑

n=1

q(zn = k)E
[(

yn −w�k φk(xn)
)2]}

(33)

where Uk and φk(xn) are related to the hyperparameters θ1:T .
In particular, to optimize θk, the following expression can be
maximized:

ln |Uk| − tr
(
UkE

(
wkw�k

))
− (Erk)

N∑
n=1

q(zn = k)E
((

yn −w�k φk(xn)
)2)

. (34)

Because the variational posterior of wk is a Gaussian (sup-
pose that the mean is μ and the covariance is Σ), vari-
able φk(xn)�wk − yn is also Gaussian distributed with mean
φk(xn)�μ− yn and variance φk(xn)�Σφk(xn). We have

E

((
yn −w�k φk(xn)

)2)
= φk(xn)�(Σ + μμ�)φk(xn) + y2

n − 2ynφk(xn)�μ. (35)

Now, the formulation for optimizing θk can be simplified as

ln |Uk| − tr(UkA)− b

N∑
n=1

q(zn = k)
[
φk(xn)�Aφk(xn)

− 2ynφk(xn)�μ
]

(36)

where we have defined symmetric matrix A = E(wkw�k ) =
Σ + μμ� and scalar b = (Erk).

To maximize the objective in (36), the conjugate gradient
ascent method [24] is used, which is outlined as follows for
completeness.

For an objective function denoted as �(w) with input w, the
gradient of the objective is g = ∇w�(w), and the Hessian is

H =
d2�(w)
dwdw�

.

The Newton step along a direction u is

w′ ← w − g�u
u�Hu

u (37)

where the values of g and H are taken at w. For conjugate
gradient ascent, u = g − βulast, and β can be given by the
popular Hestenes–Stiefel formula [24] as

β =
g�(g − glast)

(ulast)�(g − glast)
. (38)

The initial value of u can be g at some initial guess for w.
To apply the conjugate gradient ascent method to the opti-

mization of (36), the gradient and Hessian should be calculated.
Now, we provide the main elements in formulating the gradient
and Hessian. Suppose that θi and θj are entries of θk. We have

∂ ln |Uk|
∂θi

= tr
(
U−1

k

∂Uk

∂θi

)

∂tr(UkA)
∂θi

= tr
(

∂Uk

∂θi
A

)

∂
(
φk(xn)�Aφk(xn)

)
∂θi

=
∂φk(xn)�

∂θi

∂
(
φk(xn)�Aφk(xn)

)
∂φk(xn)

= 2
∂φk(xn)�

∂θi
Aφk(xn)

∂(φk(xn)�μ)
∂θi

=
∂φk(xn)�

∂θi
μ (39)

∂2 ln |Uk|
∂θi∂θj

= ∂

(
∂ ln |Uk|

∂θi

)
/∂θj

= tr
(
U−1

k

∂2Uk

∂θi∂θj

)

− tr
(
U−1

k

∂Uk

∂θj
U−1

k

∂Uk

∂θi

)

∂2tr(UkA)
∂θi∂θj

= tr
(

∂2Uk

∂θi∂θj
A

)

∂2
(
φk(xn)�Aφk(xn)

)
∂θi∂θj

= 2
[
∂2φk(xn)�

∂θi∂θj
Aφk(xn)

+
∂φk(xn)�

∂θj
A

∂φk(xn)
∂θi

]

∂2
(
φk(xn)�μ

)
∂θi∂θj

=
∂2φk(xn)�

∂θi∂θj
μ. (40)

2) Fixing I1:T : Although the support sets can be identified
from the likelihood functions similar to what variational EM
uses, it would computationally be very difficult, considering
the complex relationship between the support sets and the
likelihood. As an alternative, we use the method proposed in
[7] and [11] to fix support sets.

To find support set Ik for the kth component, the idea is to
maximize the probability density of q(wk) at its mean while
holding the distributions of other latent variables fixed. The
objective turns out to be maximizing the determinant of the
inverse covariance [7]. The rationality lies at the assumption
that a good support set should make the posterior distribution
highly peaked, particularly when we have a large training set.
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Because wk ∼ N ((Uk + rk3)−1rk2, (Uk + rk3)−1), the
objective function is then

|Uk + rk3| =
∣∣∣∣∣Uk + (Erk)

N∑
n=1

q(zn = k)φk(xn)φk(xn)�
∣∣∣∣∣ .

(41)

The procedure is explained as follows. First, we initialize
the support sets at random. Then, we run the variational EM
algorithm to obtain the variational posterior q(Ω) and the hy-
perparameters θ1:T . Finally, a greedy algorithm is used to select
the support sets from randomly chosen candidate sets to allevi-
ate the computational burden [7]. The greedy algorithm incre-
mentally selects examples to maximize the objective in (41).
The whole process is repeated until convergence or a prefixed
number of iterations are reached.

D. Prediction

For a new input x, the predictive distribution is

p(y|x,D,Θ) =
∫

p(y|x,Ω,Θ)p(Ω|D,Θ)dΩ

�
∫

p(y|x,Ω,Θ)q(Ω)dΩ

� p(y|x, Ω̂,Θ) (42)

where two approximations are used to make the computation
feasible [7]. The first approximation replaces the true posterior
by the variational posterior, and the second approximation
replaces the average with respect to the distribution q(Ω) by
a single value Ω̂. Ω̂ represents the posterior means of all the
hidden variables involved. This approach is reasonable, because
given sufficient data, posterior distributions are usually highly
peaked [7], [8].

The predictive distribution can further be formulated as

p(y|x, Ω̂,Θ) =
T∑

k=1

p(z = k, y|x, Ω̂,Θ)

=
T∑

k=1

p(z = k|x, Ω̂)p(y|x, z = k, Ω̂,Θ)

=
T∑

k=1

p(z = k|Ω̂)p(x|z = k, Ω̂)∑T
i=1 p(z = i|Ω̂)p(x|z = i, Ω̂)

× p(y|x, z = k, Ω̂,Θ).

Because p(y|x, z = k, Ω̂,Θ) is Gaussian distributed, the pre-
diction ŷ for the new input x would be the weighted
average of the T Gaussian means, and the weights are
given by p(z = k|Ω̂)p(x|z = k, Ω̂)/

∑T
i=1 p(z = i|Ω̂)p(x|z =

i, Ω̂) (k = 1, . . . , T ).

IV. EXPERIMENTS ON TRAFFIC PREDICTION

Traffic flow prediction, which is defined to be predicting
future traffic flows of a certain road segment, is an important di-
rection in the research of intelligent transportation systems [10],
[25]–[29]. Short-term traffic flow prediction, which is one of the
most important and difficult tasks, determines the traffic volume
in the next time interval, usually in the range of 5–30 min.

Fig. 2. Traffic flows of Ka during 25 days. The first row corresponds to the
first five days, and so on, for a total of 25 days.

The focus of this section is on applying the proposed IMGP
model and variational inference techniques to predicting the
short-term traffic flows of road links based on their own his-
torical traffic volumes. We will also compare this new approach
with some other traffic prediction methods, including one state-
of-the-art method BNs.

A. Data Description

The data analyzed are the vehicle flow rates recorded at an
interval of 15 min with the Urban Traffic Control/Split Cycle
and Offset Optimization Technique system by the Traffic Man-
agement Bureau of Beijing [25]. The unit of the data is vehicles
per hour (veh/hr). As done in [10] and [25], we carry out a one-
step prediction, and the prediction time horizon is 15 min. That
is, some historical data are used to forecast the traffic flow rate
for the next recording interval. Nine road links from the urban
traffic map of Beijing City are used for the experiments, which
demonstrate a wide spatial spread in the transportation network
[25]. The road links are denoted as follows: 1) Bb; 2) Ch;
3) Dd; 4) Fe; 5) Gd; 6) Hi; 7) Ia; 8) Jf ; 9) Ka.

The raw data for use are of 25 days, which include 2400
recording points for each road link. The starting time for data
recording on a day is 00:00 at midnight. To illustrate the
patterns of traffic flows, Fig. 2 depicts the raw data of road link
Ka over 25 days.

B. Model Training

For experiments on each road link, the first 2112 points
(from 22 days) are employed as the training set to infer the
variational posterior distribution of hidden variables and the
values of hyperparameters. The remaining data serve as the test
set for model evaluation and comparison. For each example
constructed from the training and test sets, the input includes
four continuous traffic volumes, and the corresponding output
is the very successive traffic volume.

The variational inference algorithm for model training is
given in Table I. For the current traffic prediction problem, the
parameters in the algorithm input are fixed as T = 5, C = 100,
S = 50, Ms = 10, Mem = 50, Me = 50, and Mm = 50. The
candidate support sets and hyperparameters θ1:T are randomly
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TABLE I
VARIATIONAL INFERENCE ALGORITHM FOR IMGP

initialized, whereas hyperparameters I1:T are initially specified
by running the k-means clustering algorithm [17].

To illustrate the result of variational posterior estimation, we
give the partition results of the training data indicated by q(zn)
for road link Ka. The proportions of the numbers of training
data that belong to each of the five mixture components are
34.09%, 17.12%, 26.57%, 14.13%, and 8.08%, respectively.

C. Prediction Results

After model training, we can carry out traffic prediction on
the test set using the method given in Section III-D. As afore-
mentioned, to make prediction feasible, we use the posterior
means of the hidden variables to represent their distributions.
To justify this approach, we show the proportions of the five
mixture components calculated in terms of the variational pos-
terior means of ν1:T for road link Ka. The resulting proportions
for the five mixture components are 34.11%, 17.14%, 26.54%,
14.11%, and 8.09%, respectively, which are quite similar to the
proportions accounted for by the training set. This case indi-
cates the rationality of using posterior means to approximate
the predictive distribution.

The prediction performance is measured by the criterion
of root mean square error (RMSE). For a time series y =
(y1, y2, . . . , yn) and its estimation ŷ = (ŷ1, ŷ2, . . . , ŷn), the
performance measure RMSE is given by the following formula:

RMSE(y, ŷ) =

(
1
n

n∑
i=1

(yi − ŷi)2
)1/2

. (43)

The BN approach [10] is one of the state-of-the-art methods
for traffic flow prediction. It models traffic flows among adja-
cent road links in a transportation network by a BN. The joint
distribution between the data used for predicting and the data to
be predicted is described as a finite Gaussian mixture model
whose parameters are estimated by an EM algorithm. This

approach explicitly integrates information from adjacent road
links to analyze the trend of the current link. When data used
are restricted to recordings from a single link, it degenerates to
the Markov chain model [25], [30]. It makes sense if we could
compare the proposed method with this version of BNs for the
current traffic prediction problem.

Table II gives the prediction results on the nine road links
using our proposed variational inference model for IMGP. For
comparison, we conducted experiments with the random walk
(RW) approach (predicting a variable using its previous value)
and ridge regression (RR) [8], in addition to the aforementioned
BN approach. In Table II, we see that IMGP got the best results
on seven of the nine road links, whereas on the other two
links, its performance is very similar to the best result. The
effectiveness of our proposed model is validated.

D. Discussion

Now, we discuss the differences between the previous BN
model and the proposed IMGP model, with the aim to interpret
their different behaviors in performance.

The major distinction lies at the capability to accommodate
more related traffic flows. The BN approach can only consider a
very limited number of related traffic flows as the input, because
it directly learns a joint distribution between the input and
output. Given limited training data, we cannot estimate a high-
dimensional distribution well, because the number of unknown
parameters will usually be high, which degrades the accuracy
of parameter estimation. This case is a typical challenge of the
curse of dimensionality [17].

However, the proposed mixture model of Gaussian processes
effectively avoids this problem, because the maximum dimen-
sionality considered for the involved flexible distribution is very
limited, i.e., the dimensionality of the input in the training set
D. Although we would like to consider using many related
traffic flows to regress the desired traffic flow such as enlarging
the size of the support sets, the number of parameters to be
estimated will not increase. For the current traffic prediction
experiments, we used all the examples in a support set to regress
a future traffic flow.

V. CONCLUSION

In this paper, we have presented a variational approximation
for IMGP. In the mixture model, the input distribution is
modeled by a multivariate Gaussian distribution with a full
covariance, whereas the output distribution conditional on the
input is a linear Gaussian process model. This linear Gaussian
process makes effective variational inference possible. To make
variational inference feasible, a truncated representation of
the Dirichlet process and a factorization assumption for the
posterior distribution are further used. Important techniques
involved in our variational inference include the variational EM
algorithm, conjugate gradient ascent algorithm, and a greedy al-
gorithm for adapting support sets. To the best of our knowledge,
the proposed approach is the first variational inference method
for infinite Gaussian process mixture models.

To validate the proposed method, we applied it to the
traffic flow prediction problem. Experiments and comparisons
with other methods, including the BN approach, showed its
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TABLE II
TRAFFIC PREDICTION RESULTS (IN RMSE) OF RW, RR, BN, AND IMGP

effectiveness. This approach is an important attempt on using
IMGP to the intelligent transportation field.

For future work, the proposed method can be extended in
several ways, e.g., considering Gaussian mixture models (finite
or infinite) to characterize the input distribution and integrating
traffic flows from correlated road links in a transportation
network to perform network-scale prediction.
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