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a b s t r a c t

Grid computing utilizes distributed heterogeneous resources to support large-scale or complicated
computing tasks, and an appropriate resource scheduling algorithm is fundamentally important for the
success of Grid applications. Due to the complex and dynamic properties of Grid environments, traditional
model-basedmethodsmay result in poor scheduling performance in practice. Scalability and adaptability
are among the key objectives of Grid job scheduling. In this paper, a novel multi-agent reinforcement
learning method, called ordinal sharing learning (OSL) method, is proposed for job scheduling problems,
especially, for realizing load balancing inGrids. The approach circumvents the scalability problembyusing
an ordinal distributed learning strategy, and realizes multi-agent coordination based on an information-
sharing mechanism with limited communication. Simulation results show that the OSL method can
achieve the goal of load balancing effectively, and its performance is even comparable to some centralized
scheduling algorithm in most cases. The convergence property and adaptability of the proposed method
are also illustrated.

© 2011 Published by Elsevier B.V.
1. Introduction

Multi-agent resource allocation is the process of distributing a
number of items amongst a number of agents, and acts as a central
matter of concern in both computer science and economics [1]. It
is relevant to awide range of application domains, such as network
routing [2], public transportation [3] and Grid computing [4–6],
where Grid computing is one of the most important applications
of resource allocation or scheduling [7].

Grid computing enables the sharing, selection, and aggrega-
tion of geographically distributed heterogeneous resources and
becomes an important solution paradigm for supporting compli-
cated computing problems. However, there are still some tech-
nical challenges for Grids [5]. For a majority of Grid systems, the
real and specific problem that underlies Grid computing is coordi-
nated resource scheduling and problem solving in dynamic, multi-
institutional virtual organizations, where an effective and efficient
scheduling algorithm is fundamentally important [8,9]. Only with
the help of a feasible scheduling policy, can the Grids speed up the
task process and provide non-trivial services to users [10]. In the
following, the job scheduling problem, which is the key issue for
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balancing the entire system load while completing all the jobs at
hand as soon as possible, is studied (see Fig. 1).

In the past decade, there have been many advances in Grid job
scheduling techniques. Various scheduling approaches, including
model-based or model-free methods, either using centralized
or decentralized mechanisms, have been developed for Grids.
On the one hand, lots of algorithms have been studied for
job scheduling problems in traditional parallel and distributed
systems, such as FPLTF (Fastest Processor to Largest Task First),
WQR (Work Queue with Replication) and FCFS (First Come
First Serve) [11]. On the other hand, extensive research has
been done for Grid scheduling problems, too. In traditional
resource scheduling systems, such as Condor [12], PBS [13] and
SGE [14], centralized schedulers work effectively since accurate
and global information can be obtained. However, centralized
or hierarchical resource allocation methods may suffer from the
lack of scalability and fault-tolerance ability as well as having a
single point of failure [15]. To overcome the scalability problem,
some decentralized scheduling algorithms have been proposed.
However, most existing decentralized schedulers, for example, in
Condor-G [16] and AppleS [17], perform individual scheduling
policies regardless of the other schedulers’ decisions and may lead
to serious synchronization problems in resource management.
Finally, a Herd behavior will arise since schedulers run without
central oversight and communication [18,19]. However, if job
scheduling is carried out under the assumption of coordination,
such as in Legion Federation [20] and Condor Flock P2P [21],
the strong dependency on negotiation among schedulers and
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Fig. 1. Resource scheduling in Grid computing.

resources may lead to high communication overhead. Therefore,
how to coordinate the scheduling among decentralized schedulers
with a moderate communication cost is an important and open
problem. A recent work to deal with the above problem has been
done in [22], where a collaborativemodel is proposed based on the
Random Early Detection (RED) strategies via gossiping and good
scheduling performance is achieved.

Moreover, to meet the need for scheduling adaptation, which
comes from the heterogeneity of resources, the variations of
resource performance, and the diversity of applications, an
adaptive scheduling method is deserved. Recently, a promising
approach based on reinforcement learning (RL) has been studied
for job scheduling and resource allocation in Grids [23]. As
an important class of machine learning methods, RL aims
to solve uncertain decision-making problems by interacting
with the environment and near-optimal or suboptimal policies
can be obtained in a data-driven way [24]. Therefore, RL
provides a model-free methodology and is very promising to
solve the difficulties of Grid resource scheduling. According to
different learning mechanisms, existing RL approaches to resource
scheduling can be mainly divided into two types. One is based
on policy gradient learning algorithms [6,25,26] and the other
uses value-function-based learning algorithms [5,23,27]. However,
the learning efficiency and scalability of existing RL methods in
Grid resource allocation still need to be improved for large-scale
applications of Grid computing.

In this paper, to realize learning-based coordination and
generalization in large-scale Grid environments, a novel multi-
agent reinforcement learning method, called the ordinal sharing
learning (OSL) method, is proposed to solve the job scheduling
problem for Grid computing. In the OSL method, a fast distributed
learning algorithm is designed based on an ordinal information-
sharing mechanism. Compared with previous multi-agent RL
(MARL) methods for job scheduling, the OSL method has two
aspects of innovations. One aspect simplifies the modeling of
optimal decision-making in job scheduling, where only a utility
table is learned online to estimate the resources’ efficiency,
instead of building the complex Grid Information System (GIS).
The other aspect circumvents the scalability and coordination
problem by an efficient information-sharing mechanism with
limited communication for multi-agent systems, where an ordinal
sharing strategy makes all agents share their utility tables and
make decisions in turn. The proposed approach was evaluated in a
simulated large-scale Grid computing environment and the results
show its validity and feasibility.

The remainder of this paper is organized as follows. Section 2
introduces a general model for job scheduling in Grid computing,
and discusses the performance measures. Section 3 discusses the
basic idea of multi-agent reinforcement learning and presents the
OSL method for Grid job scheduling. Section 4 makes performance
evaluation and comparisons of different job schedulingmethods in
a simulated Grid computing environment and the results illustrate
the effectiveness of the proposedmethod. Section 5 gives a further
overview of the related works. Finally, conclusions are made in
Section 6.
Fig. 2. A general model for Grid job scheduling [22].

2. Problem statement

2.1. A general job scheduling model in Grids

It is well known that the complexity of a general centralized
scheduling problem is NP-Complete [28]. Due to the NP-Complete
nature and the difficulty to prove the optimality of scheduling
algorithms in Grid scenarios, current research always tries to
find suboptimal solutions. Moreover, in this paper, to solve the
scalability problem, a strategy where decentralized schedulers
take charge of job scheduling simultaneously instead of a
centralized scheduler is considered. To describe the dynamicity,
randomness, heterogeneity of Grid computing, a general Gird job
scheduling model is studied, which has been widely used in the
literature to evaluate various job scheduling algorithms [22,29,30].
The general job scheduling or resource allocation model for Grids
can be illustrated by Fig. 2 [22].

In Fig. 2, the main components include users, schedulers and
resources, where different schedulers dealwith the jobs in parallel.
They are responsible for receiving jobs from users and allocating
them to resources. Unlike their counterparts in traditional parallel
and distributed systems, Grid schedulers usually cannot control
resources directly, but work like brokers [17,31]. Each of the
schedulers can submit jobs to any of the computing resources,
and finally generate job-to-resourcemappings. In the abovemodel,
the users merely produce and submit jobs to schedulers and their
roles can be replaced by job creators entirely. The model of the
job arrival or work loads can be described by a Poisson process or
other probability-basedmodels, or by autocorrelationmodels [30].
In a large-scale Grid system, due to the lack of control over the
resources and the long update cycles for resources, the available
resource information for schedulers is time delayed and may be
inaccurate. Therefore, the limited observability of job schedulers
becomes a barrier for job scheduling algorithms based on timely
and accurate information, and it is necessary to develop more
robust and adaptive scheduling algorithms, which is one of the
main motivations of this paper.

In general, the decentralized job scheduling problem in Grids
can bemodeled as amulti-agent job scheduling system [29], which
is denoted as a 6-tuple ⟨G, R, P,D, C, SR⟩, where G = {g1, . . . , gN}

is a set of agents, S = {s1, . . . , sM} is a set of resources, P : G×N →

[0, 1] is a job submission function,D : G×N → ℜ is a probabilistic
job size function, C : G × N → ℜ is a probabilistic capacity
function, and SR is a job scheduling rule.
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To focus on the job scheduling tasks, the above model
makes some abstraction but maintains the main features of
Grid computing environments, i.e., heterogeneity of dynamic,
large-scale populations of users and resources [5]. Although
the design issues for real implementation, such as network
topology, are not considered in detail, the model in Fig. 2 is
general enough since different representative models including
stochastic job submission functions, job size functions, and
capacity functions, can be developed to describe the salient
properties of Grid workloads [30]. By making use of stochastic
or autocorrelation models of Grid workloads, it is possible to
study job scheduling algorithms for dealing with the dynamicity,
randomness, heterogeneity of Grid job scheduling problems. In
the following, to facilitate discussions, it is assumed that all the
schedulers use the same scheduling algorithm and all the jobs only
require CPU resources so that they are uniquely characterized by
their duration J .

2.2. Performance measures for job scheduling in Grids

In the above Grid scheduling model, resources execute the
assigned jobs and may differ in their capabilities, e.g. one
computing resource may take more time than the other in
executing the same job. Each resource is characterized by its
processing capacity C , which is defined as the inverse of CPU time
needed to complete a job of a unit length, i.e. if a resource needs
duration t to complete a unit job of length J = 1, its capacity is
C = 1/t . Furthermore, it is assumed that all the jobs in the queue
are prioritized by their arrival time, hence there is only one single
job being executed on a resource at a given time, while the others
are waiting in the queue.

The common performance measure in Grid job scheduling is
the time-per-token in average (ATPT). The time-per-token (TPT)
is measured by the time elapsed between the generation and
completion of a job, so the corresponding criterion in average,
i.e. ATPT, can be formulated as follows:

ATPT =
1
L

L−
i=1

TPTi =
1
L

L−
i=1


t iwait + t iexecute


(1)

where TPTi is the total elapsed time for the ith job, which is the
sum of the queue waiting time t iwait (the elapsed time between a
job submission and the start of execution) and the actual execution
time t iexecute, L denotes the total number of jobs completed by all
resources. However, ATPT could not characterize the scheduling
performance for the whole Grid system in time because only after
the job has been completed, could this metric be updated. If the
job queues in the resources are very long, the update of ATPT is
delayed seriously. Finally, the value of ATPTmerely reflects the past
efficiency of job scheduling, not the current one.

Therefore, another competent metric, namely the load of
resources (LoR, or makespan) is used. The LoR is defined as the
total length of the jobs in the queue ltotal divided by the current
resource’s capacity Ci, and the average LoR (ALoR) of the system
can replace the average time-per-token completely. ALoR can be
expressed as:

ALoR =
1
M

M−
i=1

LoRi
=

1
M

M−
i=1


litotal/Ci



=
1
M

M−
i=1

 Li−
j=1

J ij/Ci

 (2)

where LoRi is the load of the ith resource, litotal is the total length of
the jobs in the queue, which is the sum of all queued jobs’ length
J ij , L
i is the number of jobs in the ith resource’s queue, andM is the

number of resources. The merit for the new performance measure
is evident since it reflects the system performance promptly
and comprehensively. Finally, the objective of job scheduling
algorithms is to minimize the ALoR and its standard deviation.
Minimizing both of the above twoquantitieswill ensure the overall
systemefficiency aswell as fairness. Besides the above twometrics,
the maximal LoR in resources is another measure to reflect the
transient performance.

3. The OSL method for adaptive job scheduling

As mentioned above, in practical large-scale Grid applications,
even with the help of the GIS system, the information about
resources in the schedulers is time delayed and potentially
inaccurate. So it is reasonable to develop a robust scheduling
algorithm which is not dependent on an accurate model. To
satisfy the requirements in adaptive job scheduling, a coordinated
multi-agent reinforcement leaning method may be an appropriate
solution. In the following, after an analysis on different MARL
frameworks, a novel decentralized MARL method is proposed for
resource selection and job scheduling, where cooperative control
among multiple agents or schedulers is achieved by an ordinal
sharing learning method.

3.1. Basic frameworks for multi-agent reinforcement learning

Reinforcement learning techniques [24] address the problem of
how an agent can learn to approximate an optimal or near-optimal
behavioral strategy while interacting with its environment. Most
single-agent RL algorithms are based on the formalism of Markov
Decision Processes (MDPs) [32]. However, as an extension of
RL to distributed decision-making environments, multi-agent
reinforcement learning has to deal with the problem that the
coexistence of multiple agents breaks the stationary property
of the environment. Until now, many MARL algorithms have
been developed based on the Stochastic Game (SG) model [33],
for example, the JAL [34] and the Team-Q algorithm [35].
Nevertheless, the poor scalability and low information-utilization
efficiency are two major obstacles for successful applications of
MARL to large-scale applications. For the job scheduling problem
depicted in Fig. 2, the number of schedulers and resources is very
large, so, it is difficult for previous MARL methods to be adopted.

In addition to the SG model, another framework of MARL
is to extend single-agent reinforcement learning techniques to
multi-agent systems directly, which is to make each agent learn
independently according to the local state and local reward
without explicit communication. This technique is called the
independent learner (IL) approach in MARL [34] and there
have been some IL algorithms developed in the literature
[5,36,37]. Although the IL approach to MARL does not need to
explore the exponentially growing joint state–action space, the
environment will not be stationary any more and there will be
convergence problems and oscillatory behaviors in MARL. As we
will illustrate in Section 4.1, if the IL method without coordination
and communication is used in job scheduling in Grids, a Herd
Behavior will usually arise [22].

To deal with the above difficulties, a promising approach to
multi-agent reinforcement learning is to perform local learning
with information sharing and coordination in order to realize the
balance between efficiency and optimality. Based on this idea, a
novel MARL method called the OSL algorithm will be presented in
the following discussions.
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Fig. 3. The schematic diagram of the OSL method for job scheduling.

3.2. The OSL algorithm for job scheduling in Grids

To overcome the ‘curse of dimensionality’ problem in MARL,
we propose the OSL algorithm with decreased computational
complexity and an improved coordination mechanism. The new
algorithm has two main characteristics. Firstly, it adopts a
distributed RL framework and employs a novel utility-table-
based learning strategy. Since the OSL method merely utilizes
the local information for learning, it is a RL method based on
independent learners. Secondly, it makes use of an information-
sharingmechanismwith limited communication costs to solve the
multi-agent coordination problem.

The scheme of OSL is depicted in Fig. 3. The upper loop
denotes the schedulers which share the utility tables. The utility
table only scales up with the number of resources, M , linearly,
so the communication cost is limited. The lower part denotes a
scheduler agent in detail. Each scheduler agent mainly comprises
two parts: the Learner and the Actor. The Learner receives and
shares the utility table from preceding agents in an ordinal
manner, and makes decisions to select resources for the jobs
queued in the Job Buffer. The Reward Converter can analyze and
convert the jobs’ completion signal into reward signals, which
are essential to update the utility table. The Actor receives the
new jobs and arranges them so that they queue up in Job Buffer,
then submits them to corresponding resources according to the
Learner ’s decisions and records the submission in the Submitted Job
List. Finally, the Actorupdates the Submitted Job List according to
the jobs’ completion, namely, if a job is completed, then it will be
deleted from the Submitted Job List.

Generally speaking, there are two key problems to be consid-
ered for the implementation of OSL:

Firstly, although it is well known that the global resource state
is the basis for schedulers’ decisions, it is hard to obtain accurate
information for all schedulers in a dynamic environment due to the
schedulers’ limited capacities in observation and communication.
In this paper, an indirect method, which makes use of the jobs’
information to estimate the state, is proposed. A scheduler records
information of a submitted job as a vector (nr , ts, te, J), i.e., the
name nr of the resource used, the job starting time ts, the
job-completion time, te, and the job size, J . Then, it abstracts
Fig. 4. The utility table U i .

the information to estimate the corresponding resource’s state.
However, if a scheduler has never submitted jobs to a resource,
it knows nothing about it. So, such an estimation from individual
experiencesmerely contains partial information of the global state.
To improve the estimation accuracy, some effectivemeans, such as
information sharing, must be taken.

Secondly, it is hard to obtain the instantaneous rewards
for learning directly. The environment cannot provide any
global reinforcement signals directly but only individual job-
completion signals. So the scheduler agents have to convert such
information into reward information. In fact, due to the existence
of other schedulers, one job’s time-per-token is determined by
all schedulers’ policies together. How to compute appropriate
reinforcement signals from the above information will be a
problem. What is more, when one scheduler waits for feedback of
its submitted jobs, the Grid environment may change due to the
other schedulers’ operation, so it is too late for one scheduler to
update its utility table only after the job’s completion. A possible
solution is to develop a reward mechanism to create reward
information at every time step, no matter whether the scheduler
executed a job submission.

In the following subsections, to solve the above problems, a
novel reward generation mechanism and an information-sharing
mechanism will be presented.

3.2.1. The decentralized learning strategy using utility tables
In the above model, the scheduler agents are depicted as G =

{g1, g2, . . . , gN}, where each scheduler agent gi may take charge
of job scheduling for several users. The resources are denoted by
S = {s1, s2, . . . , sM}. Similar to the learning methods for the
bandit problem [24], agent gi keeps a utility table U i to score the
efficiency of the resources,whereU i(j)denotes the efficiency of the
jth resource, or scores the action selecting the jth resource from the
resource set S, i.e., j ∈ {1, 2, . . . , |S|} = {1, 2, . . . ,M}. The utility
table for scheduler gi is depicted in Fig. 4.

For each time step in the decentralized learning process, the
agent gi executes the resource selection operation and the utility
update operation based on the following two steps:

Step 1: The agent gi checks and judges whether there is a new
job arrival. If not, go to Step 2. If so, execute step 1 repeatedly
till all the jobs are scheduled. Agent gi chooses the resource sj
which has the highest score, then submits the job to resource sj
and records it as an unfinished job in Submitted Jobs List. If the jth
action is executed, an instantaneous reward is obtained as r(j) =

−1, and the corresponding utility U i(j) for this action is updated
simultaneously:

U i(j) = (1 − α) ∗ U i(j) + α ∗ r(j) (3)
where α is the learning rate.

Step 2: The agent gi advances the vacant scheduling process
and updates the utilities. As mentioned above, an instantaneous
reward signal is designed for each step even if there is no job
submission. The agent gi creates the reinforcement signal for each
action according to the jobs’ states in the Submitted Jobs List,
namely:

u(j) =


+1 only the job is finished
0 no job
−1 job is unfinished

j ∈ {1, 2, . . . ,M}. (4)
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If multiple jobs are submitted to the same resource, there will
be an independent reinforcement signal for each job. Finally, the
reward for corresponding actions can be calculated by adding up
all the signals:

r(j) =

K j−
k=1

u(k) (5)

where K j denotes the number of jobs being submitted to the jth
resource currently. For example, suppose that the current agent
submitted 3 jobs to the 1st resource, and after one time step, a job
is finishedwith the other two jobs unfinished. So the instantaneous
reward for selecting the 1st resource is: r(1) = 1+2∗(−1) = −1.
When the whole reward vector (r(1), r(2), . . . , r(N)) is obtained,
the utility for each resource can be updated with Eq. (3).

By this time, the agent gi can use the utility table U i to estimate
the efficiency of all the resources. For instance, if one resource’s
queue is long or the resource’s capacity is poor, after the scheduler
submitted a job to it, the scheduler has to wait for a long time
to receive the accomplished response from the resource. So, the
scheduler will get the reward signal −1 for much more times
than getting reward +1. Finally, the corresponding utility value
of this resource will be small. Obviously, according to the utility
table, the bigger the utility value becomes, the better the resource
state is. The successive update operation gives a timely feedback
of resources’ working state, and it is essential to make a feasible
decision for allocating successive jobs.

3.2.2. Multi-agent information sharing based on limited communica-
tion

In the above subsection, a utility table is built to estimate
the efficiency of the resources. A modified reward and update
mechanism is developed to indicate the resources’ efficiency.
However, in Grid applications, there aremultiple scheduler agents.
If all the agents learn and make decisions independently and
simultaneously, a coordination problem occurs. Apparently, any
decision of a scheduler will change the resources’ state, but the
other schedulers will not detect the change until they submit
jobs to the same resource (they indirectly detect this by using
the waiting time in the queue). So the utility table in a particular
agent cannot exactly indicate the true state of the resources.
Furthermore, possible collisions will become more severe along
with the increasing number of schedulers. Therefore, a feasible
coordination mechanism must be developed for distributed
learning in the Grid job scheduling problem.

Since each agent owns a local utility table to estimate the
resources’ efficiency, it is a natural way to improve the precision
of estimation by sharing the utility tables. However, since the
number of scheduler agents in Grids is very large, it is impossible to
share each utility table directly. Therefore, in this paper, an ordinal
sharing mechanism with limited communication is proposed to
meet the above requirement. The coordination among agents
is realized by sharing neighboring agent’s utility table ordinally
and iteratively. As shown in Fig. 4, the utility table is merely
in proportion to the scale of resources linearly. So the total
communication cost among agents is low and is constant at all
times.

To implement the information-sharing mechanism, an ordinal
structure is defined for all the scheduler agents by sorting the
agents as g1, g2, . . . , gN , then the agents share their utility tables
and make their decisions in an ordinal manner, namely, agent gi
shares the preceding agents’ utility information as follows:

U i(j) = (1 − β) · U i(j) + β · U i−1(j) (6)

where β is the sharing factor. U i−1(j) is the utility table of
neighboring agent gi−1 and contains all the preceding agents’
estimation of resources’ efficiency. Finally, the last agent’s utility
table is returned to the first agent for sharing again. In otherwords,
the utility sharing process is ordinal and iterative.

Table 1 shows the main procedure in the OSL algorithm for
agent gi in Grid job scheduling.

Compared with other MARL algorithms, the OSL algorithm is
more suitable to be implemented in large-scale job scheduling
applications. As a utility-table-based learning method, there are
no explicit state variables in the utility table function, so it is
more adaptive to the Grid scenarios where both resources and
applications are highly diverse and dynamic. Furthermore, another
important advantage of OSL is the low communication costs for
coordination. The total amount of information exchange is the
simple utility table, whose scale is linear with respect to the
number of the resources and is much lower than the exponential
one in direct communication mode.

4. Performance evaluation and discussions

In this section, the performance of the OSL-based Selection
(OSLS) rule for job scheduling will be evaluated and analyzed in
simulations. In addition, the proposed OSLS method is compared
with four other resource scheduling or selection rules, which are
Decentralized Min–Min Selection (DMMS) [38], Random Selection
(RS), Least Load Selection (LLS), and Simple Learning Selection
(SLS) [5]. The Min–Min algorithm is a heuristic scheduling method
that becomes a benchmark scheduling algorithm for performance
comparisons [38]. Based on the decentralized scheduling model,
each scheduler executes the decentralized Min–Min algorithm
independently. A scheduler’s decision may not be accurately
known by others in a dynamic environment even with the help
of the GIS system. The reason is that time delays are always
inevitable for the information updates in GIS. In the RS method,
an agent chooses resources for a job randomly according to a
uniform probability distribution. In the LLS method, an agent
chooses the least loaded resources to submit a job. If there are
multiple resourceswith the sameminimum load, then one of them
is chosen randomly. This selection rule assumes that the agents can
obtain accurate global resource information, for instance, from an
ideal GIS system. In the SLS method, agents perform independent
reinforcement learning processes. It is different from the proposed
OSLS method in that an agent does not update its utility table until
it received the final completion signals for the submitted jobs from
the resources, and each agent learns independently without any
coordination information [5].

The scale of the Grid system can be defined as the combination
(N,M) of the number of agents (N) and the number of resources
(M). During every time step, each scheduler agent gi may receive
jobs with random numbers generated by a Poisson process.
The arriving rate of the jobs is denoted as ξ . The lengths of
the jobs are generated randomly from a uniform distribution
in interval [Jmin, Jmax]. The capacities of the resources were also
chosen uniformly in the interval [Cmin, Cmax]. So the system can be
described by the parameter set (N,M, ξ , [Jmin, Jmax], [Cmin, Cmax]).
As a result, the expected system load γsystem, which is jointly
determined by the total disposal capacity of Grids and the total jobs
arrived, can be calculated as:

γsystem =
Jtotal
Ctotal

=

N∑
j=1

(Javj ∗ ξj)

M∑
i=1

Ci

=

N∑
j=1

((Jmin + Jmax)/2 ∗ ξj)

M∑
i=1

Ci

∗ 100% (7)
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Table 1
The OSL algorithm for Grid job scheduling.

where Javj is the medium value of the jobs’ length for the jth
scheduler. Apparently, the system load should not be more than
100%, otherwise the scheduling system will go corrupt. In fact, a
system load more than 90% is very heavy for Grids. An effective
job scheduling algorithm can balance the load of the system by
utilizing all the resources fairly and fully. To test the newmethod’s
load-balancing capability, several experiments are carried out in
what follows.

4.1. Performance evaluations under different system scales

To experiment with different system scales, three kinds of
system scales, namely (30, 100), (100, 250) and (300, 1000), are
selected. These configurations are large enough to represent the
scale of a typical Grid computing environment. The dispersion
range of the jobs’ length is set as [5, 995]. The interval of resources’
capacity is [50, 350]. The job arrival rate is 0.93, 0.7 and 0.93,
respectively. So all the system loads are approximately around
70%. It is a typical medium system load for Grid applications. The
simulation results are shown in Fig. 5.
In Fig. 5, the ALoR curves of different job scheduling methods
show that, under medium system loads, only the OSL method,
the DMMS method and the LLS method achieve efficient load
balancing in different system scales. Obviously, the LLS method
is a centralized method and can achieve the best scheduling
policy. But the expensive costs for computing and communication
prevent it from being effectively applied in real-world Grids. The
DMMS method can balance the load, however, the efficiency is
lower than the LLS method in that non-coordinated decisions may
conflict and result in over-utilization/under-utilization of some
resources. The OSL algorithm is decentralized and needs only a
limited communication cost, but can obtain a better suboptimal
policy for different system scales. It is shown that, at the beginning,
the OSL method may have worse performance than DMMS and
LLS. This is because the schedulers using the OSL method have no
prior knowledge of the Grids, but the schedulers with the other
two heuristic methods can obtain the environment information
from the GIS system. When the OSL-based schedulers accumulate
enough experiences by trials, a good scheduling performance can
be achieved finally.

As is shown, the performance of the SLS rule is very poor and
it fails to accomplish the job scheduling task. This phenomenon
arises mainly due to the inappropriate reward mechanism and the
synchronization problem. For the SLS method, it adopts a delayed
reward mechanism regardless of its bandit-like model. Moreover,
the SLS-based schedulers learn and work independently without
coordination. Evidently, this behavior causes over-utilization of
some resources while leading under-utilization of others, which
will deteriorate the scheduling performance. This pathology is
known as herd behavior [18,19].

The agents with the RS rule choose the resources randomly
without considering their efficiency at all, so the LoR on the
resources with low capacities will grow indefinitely. Finally, the
average load, ALoR, increases out of control. Moreover, for the
RS rule, it is true that, the larger the scale is, the worse the
performance becomes.

4.2. Performance evaluations under different system loads

To test the newmethod’s adaptive performance under different
system loads, three system load configurations, i.e., 50%, 70% and
90%, are selected, and the system scale is set as (100, 250). The
other parameters are the same as the former experiment. Fig. 6
shows the variation curves of ALoR under different system loads.

Clearly, it is shown that the OSL method allows the agents to
schedule jobs among the resources muchmore efficiently than the
RS and SLS methods. Moreover, the OSL approach can converge to
a suboptimal policy even with increasing system loads. Therefore,
the proposed OSL method can be adaptive to different system
loads. From Fig. 6, it can be observed that for low system loads,
OSL can even converge to a near-optimal policy which has similar
performance as the centralized LLS method. When the system
loads increase, OSL can also find a suboptimal policy which is
comparable to LLS.

4.3. Performance evaluations under different resource capacities

In the former simulations, the interval of resources’ capacity
is broad, namely [50, 350]. In fact, different intervals can affect
the system performance remarkably. In the following, a narrow
interval of resources’ capacity, [150, 250], is chosen, and the above
simulation with system scale (200, 500) is conducted again. The
results are shown in Fig. 7.

In Fig. 7, when the system load is light (γsystem ≤ 70%), the
RS method is good enough for job scheduling. The reason may be
that all resources’ capacities, which are all larger than 150, are high
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(a) Small scale. (b) Medium scale. (c) Large scale.

Fig. 5. Performance comparisons with different scales under medium system loads.
(a) γsystem = 50%. (b) γsystem = 70%. (c) γsystem = 90%.

Fig. 6. Performance comparisons under different system loads.
(a) γsystem = 50%. (b) γsystem = 70%. (c) γsystem = 90%.

Fig. 7. Performance comparisons with different resource capacities.
enough to avoid keeping a long job queue. In addition, the SLS
method can also obtain good performancewhen the system load is
low, which is shown in Fig. 7(a). However, both RS and SLS cannot
get good performance for a high system load, as shown in Fig. 7(b)
and (c). When the system load increases, the performance of the
RS method declines and becomes infeasible finally. However, the
OSLmethod can achieve load balancing consistently with different
resource capacities.

4.4. Performance evaluations under different numbers of schedulers
and resources

In the following simulations, different ratios of scheduler
numbers and resource numbers are chosen as (500, 200) and (1000,
500). The interval of jobs’ length and the interval of resources’
capacity are [5, 995] and [250, 750], respectively. The job arrival
rate is 0.2 and 0.4 (so the system load is 50% and 80%, respectively).
The results are shown in Fig. 8.

According to Fig. 8, it is obvious that the SLS method has good
performance when the number of schedulers is much greater
than the number of resources. The results are consistent with the
conclusion in [5]. Such good results may be due to the low job
arrival rate and the powerful resource capacities. However, for
real-world Grids, it is not common for the number of schedulers
to be more than the number of resources. Moreover, notice that
the performance of the SLS rule is still inferior to the OSL method
under different conditions.

4.5. Other performance measures

Besides the average load of resource (ALoR), other metrics can
be used to measure the system performance. Generally, ALoR
indicates the macro-performance of the system, but the transient
performance, such as the maximal LoR (or makespan) in the
resources, is also important. Moreover, the standard deviation
of the LoR is another metric to evaluate the efficiency of a job
scheduling algorithm. Figs. 9 and 10 show the corresponding
results of the experiments in Section 4.1.

From the above two figures, it is found that the maximal LoR
and the deviation for OSLS are convergent while the RS, SLS and
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(a) γsystem = 50%. (b) γsystem = 80%.

Fig. 8. Performance comparisons with different number of schedulers and resources.
Fig. 9. Maximal LoR under small, medium and large system scales.
Fig. 10. Standard deviation of LoR under small, medium and large system scales.
DMMS rules are divergent quickly. Although themagnitudes of the
OSLS curves increase along with the increasing system scale, they
level off finally. The same results were obtained under different
system loads. In otherwords, all the results show that the transient
performance and efficiency of the OSL algorithm is satisfactory.

4.6. Performance evaluation with different learning rates and sharing
factors

In all the above simulations, the learning rate and the sharing
factor are both set as 0.5. In fact, the learning factors and sharing
factors can be viewed as compromises between new information
and past experiences, as well as an agent’s own knowledge and
others’ knowledge. Some different configurations for the two
parameters can be chosen. In the following, an experiment, which
has the same conditions as the one in Section 4.1 (b), is made,
where different learning rates and sharing factors are evaluated,
respectively.

Fig. 11(a) shows the performance variations of OSL with
different learning rates, 0.2, 0.5 and 0.8, respectively, where the
sharing factor is equal to 0.5. Fig. 11(b) shows the performance
variations of OSL with different sharing rates, 0.2, 0.5 and 0.8,
respectively, where the learning rate is equal to 0.5. The results
show that too large or small values of α and β may result in
undesired scheduling performance. From the empirical studies, a
medium value of the learning rates and the sharing factors can be
selected to get good performance.

4.7. Summary

According to the above experiments, the advantages of
the OSL algorithm are obvious. By using the ordinal sharing
learning mechanism, the OSL algorithm achieves a comparable
performance to a centralized and model-based method, i.e. the
LLSmethod, but withmuch lower computational costs and limited
communication. Furthermore, the new method is less sensitive to
working conditions than other algorithms and achieves effective
load balancing based on MARL. Table 2 shows a summary of the
comparisons among different job scheduling methods studied in
this paper.

5. Related works

For the RL-based job scheduling problem in Grids, there are
some other related works. In [5], the SLS method was adopted
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a b

Fig. 11. Performance of OSL with different learning rates (left) and sharing factors (right).
Table 2
Comparisons among different job scheduling methods.

Structure Learning Communication Convergence Optimality

RS Distributed No No No No
LLS Centralized No Heavy Yes Near-optimal
SLS Distributed Yes No No No
DMMS Distributed No Delayed/heavy Yes Suboptimal
OSLS Distributed Yes Light Yes Suboptimal
for Grid job scheduling. However, the above experimental results
show that the SLS method only has good performance in some
special cases when the number of users is much more than the
number of resources. Moreover, its performance still needs to be
improved.

In [6], the authors introduced a new gradient ascent learning al-
gorithm namedWeighted Policy Learner (WPL) for the distributed
task allocation problem in domains like the Grids, and other dis-
tributed systems. WPL can learn a stochastic policy without ob-
serving other agents’ actions. However, for the limited observation
information and the difficulty in acquiring an equilibrium solution,
the convergence rate of multi-agent gradient ascent methods is
slow, especially for large-scale problems. So, the authors merely
tested WPL for a small-scale problem, where both the numbers of
severs and users are no more than five.

To solve the coordinated learning problem in dynamic resource
allocation, some value-function-based RL algorithms were pro-
posed in [39,27]. To extend standard Q -learning to resource allo-
cation problems with large or continuous state–action spaces, RL
methods with function approximation have been studied. How-
ever, it is still hard to solve the problem of large-scale Grid ap-
plications. In [25,26], a multi-agent RL approach named the Fair
Action Learner (FAL) algorithm was applied to share the resources
across clusters in a decentralized manner. FAL adopts a direct pol-
icy search technique, the Policy Gradient Ascent (PGA) algorithm,
to learn decision-making policies. However, from their experimen-
tal results, the convergence rate of the learning process is still slow.

In [40], the authors treated the resource allocation problem as
a composite MDP and proposed a simplified localized RL approach
where the actions, states and rewards are all absolutely localized.
The local RL approachwas tested in the resource allocation task for
a data center prototype and some promising resultswere obtained.
However, proper coordination among agents is essential to get
better system performance.

6. Conclusions

One of the key concerns of Grid computing is to develop
autonomic computing systems that have the abilities of self-
configuration and self-optimization in dynamic environments. In
this paper, the OSL method based on multi-agent reinforcement
learning is proposed to solve the job scheduling problem in
Grids. This approach circumvents the scalability problem by
using a distributed learning strategy, and achieves multi-agent
coordination based on an ordinal information-sharingmechanism.
Finally, the performance of the OSL algorithm is evaluated
and compared with other algorithms, where a general Grid
job scheduling model is studied and simulated to describe the
dynamicity, randomness, heterogeneity of Grids. The simulation
results illustrate that a proper online learning method can have
a substantial positive effect on the quality of load balancing in a
heterogeneous Grid system, and the effectiveness and efficiency
of the OSL algorithm is illustrated. Future work may include the
improvement and application of the proposed method in real Grid
environments.
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